已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個零點(diǎn),且1是其中一個零點(diǎn).
(1)求b的值;
(2)求f(2)的取值范圍;
(3)試探究直線y=x-1與函數(shù)y=f(x)的圖像交點(diǎn)個數(shù)的情況,并說明理由.
(1)解:∵,∴. ∵在上是減函數(shù),在上是增函數(shù), ∴當(dāng)時,取到極小值,即. ∴. (2)解:由(1)知,, ∵1是函數(shù)的一個零點(diǎn),即,∴. ∵的兩個根分別為,. ∵在上是增函數(shù),且函數(shù)在上有三個零點(diǎn), ∴,即. ∴. 故的取值范圍為. (3)解:由(2)知,且. 要討論直線與函數(shù)圖像的交點(diǎn)個數(shù)情況, 即求方程組解的個數(shù)情況. 由, 得. 即. 即. ∴或. 由方程, 得. ∵, 若,即,解得.此時方程(*)無實(shí)數(shù)解. 若,即,解得.此時方程(*)有一個實(shí)數(shù)解. 若,即,解得.此時方程(*)有兩個實(shí)數(shù)解,分別為,. 且當(dāng)時,,. 綜上所述,當(dāng)時,直線與函數(shù)的圖像有一個交點(diǎn). 當(dāng)或時,直線與函數(shù)的圖像有二個交點(diǎn). 當(dāng)且時,直線與函數(shù)的圖像有三個交點(diǎn). |
本小題主要考查函數(shù)、導(dǎo)數(shù)、方程等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、分類與討論的數(shù)學(xué)思想方法,以及運(yùn)算求解能力 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011屆南京市金陵中學(xué)高三第四次模擬考試數(shù)學(xué)試題 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=ax2-(2a+1)x+2lnx(a為正數(shù)).
(1) 若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2) 求f(x)的單調(diào)區(qū)間;
(3) 設(shè)g(x)=x2-2x,若對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三上學(xué)期開學(xué)考試數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高三第三次月考文科數(shù)學(xué)卷 題型:選擇題
已知函數(shù)f(x)=若f(a)=,則a= ( )
A.-1 B.
C.-1或 D.1或-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:填空題
已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(x)=x無實(shí)根,下列命題中:
(1)方程f [f (x)]=x一定無實(shí)根;
(2)若a>0,則不等式f [f (x)]>x對一切實(shí)數(shù)x都成立;
(3)若a<0,則必存在實(shí)數(shù)x0,使f [f (x0)]>x0;
(4)若a+b+c=0,則不等式f [f (x)]<x對一切x都成立;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)f(x)=|lg(x-1)|-()x有兩個零點(diǎn)x1,x2,則有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com