P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點(diǎn),F(xiàn)1、F2是橢圓的左、右焦點(diǎn),若使△F1PF2為直角三角形的點(diǎn)P共有8個(gè),則橢圓離心率的取值范圍是( 。
A、(
2
2
,1)
B、(
3
2
,1)
C、(0,
2
2
)
D、[
2
2
,1)
分析:由題意有可得,以F1F2為直徑的圓與橢圓有4個(gè)交點(diǎn),求得當(dāng)點(diǎn)P在y軸上時(shí),e=
2
2
,從而得到滿(mǎn)足條件的 
2
2
<e<1.
解答:解:由題意有可得,以F1F2為直徑的圓與橢圓有4個(gè)交點(diǎn),
又離心率越大,橢圓越扁,當(dāng)點(diǎn)P在y軸上時(shí),b=c,
橢圓離心率為e=
c
a
=
c
2
c
=
2
2
,
∴滿(mǎn)足條件的
2
2
<e<1,
故選 A.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,求出當(dāng)點(diǎn)P在y軸上時(shí),e=
2
2
,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)x-y+
2
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線(xiàn)與橢圓C相交于A,B兩點(diǎn),設(shè)P為橢圓上一點(diǎn),且滿(mǎn)足
OA
+
OB
=t
OP
(O為坐標(biāo)原點(diǎn)),當(dāng)|
PA
-
PB
|<
2
5
3
時(shí),求實(shí)數(shù)t取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,定義以原點(diǎn)為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的“準(zhǔn)圓”.已知橢圓C:
x2
a2
+
y2
b2
=1
的離心率為
3
3
,直線(xiàn)l:2x-y+5=0與橢圓C的“準(zhǔn)圓”相切.
(1)求橢圓C的方程;
(2)P為橢圓C的右準(zhǔn)線(xiàn)上一點(diǎn),過(guò)點(diǎn)P作橢圓C的“準(zhǔn)圓”的切線(xiàn)段PQ,點(diǎn)F為橢圓C的右焦點(diǎn),求證:|PQ|=|PF|
(3)過(guò)點(diǎn)M(-
6
5
,0)
的直線(xiàn)與橢圓C交于A,B兩點(diǎn),為Q橢圓C的左頂點(diǎn),是否存在直線(xiàn)l使得△QAB為直角三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:離心率e=
5
-1
2
的橢圓為“黃金橢圓”,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)為F(c,0)(c>0),P為橢圓E上的任意一點(diǎn).
(1)試證:若a,b,c不是等比數(shù)列,則E一定不是“黃金橢圓”;
(2)沒(méi)E為黃金橢圓,問(wèn):是否存在過(guò)點(diǎn)F、P的直線(xiàn)l,使l與y軸的交點(diǎn)R滿(mǎn)足
RP
=-2
PF
?若存在,求直線(xiàn)l的斜率k;若不存在,請(qǐng)說(shuō)明理由;
(3)已知橢圓E的短軸長(zhǎng)是2,點(diǎn)S(0,2),求使
SP
2
取最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),且a、b、c成等比數(shù)列.
(1)求隨圓c的離心率e;
(2)若P為橢圓c上一點(diǎn),是否存在過(guò)點(diǎn)F2、P的直線(xiàn)l,使l與y軸的交點(diǎn)Q滿(mǎn)足
PQ
=2
PF2
?若存在,求直線(xiàn)l的斜率k;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下五個(gè)命題中:
①若兩直線(xiàn)平行,則兩直線(xiàn)斜率相等;
②設(shè)F1、F2為兩個(gè)定點(diǎn),a為正常數(shù),且||PF1|-|PF2||=2a,則動(dòng)點(diǎn)P的軌跡為雙曲線(xiàn);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線(xiàn)的離心率;
④對(duì)任意實(shí)數(shù)k,直線(xiàn)l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)為它的一個(gè)焦點(diǎn),則以PF為直徑的圓與以長(zhǎng)軸為直徑的圓相切.
其中真命題的序號(hào)為
③④⑤
③④⑤
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案