一種電腦屏幕保護(hù)畫(huà)面只有符號(hào)“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為,出現(xiàn)“×”的概率為.若第次出現(xiàn)“○”,則=1;出現(xiàn)“×”,則=-1.令

(1)當(dāng)==時(shí),記,求的分布列及數(shù)學(xué)期望;

(2)當(dāng)=,=時(shí),求S8=2且Si≥0(i=1,2,3,4)的概率.

解:(1)∵的取值為1,3,又,

∴P(=1)=C×2×2=,

P(=3)= 3+3=

的分布列為

l

3

P

    ∴E=1×+3×=

    (2)當(dāng)S8=2時(shí),即前8秒出現(xiàn)“○”5次和“×”3次,又已知Si≥0(i=1,2,3,4),

    若第1、3秒出現(xiàn)“○”,則其余6秒可任意出現(xiàn)“○”3次;

    若第1、2秒出現(xiàn)“○”,第3秒出現(xiàn)“×”,則后5秒可任出“○”3次.

    故此時(shí)的概率為P=(C+C)×()5×()3=(或).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一種電腦屏幕保護(hù)畫(huà)面,只有符號(hào)“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q,若第k次出現(xiàn)“○”,則記ak=1;出現(xiàn)“×”,則記ak=-1,令Sn=a1+a2+••+an
(I)當(dāng)p=q=
1
2
時(shí),記ξ=|S3|,求ξ的分布列及數(shù)學(xué)期望;
(II)當(dāng)p=
1
3
,q=
2
3
時(shí),求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一種電腦屏幕保護(hù)畫(huà)面,只有符號(hào)“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”與出現(xiàn)“×”的概率均為
12
,若第k次出現(xiàn)“○”,則ak=1;出現(xiàn)“×”,則ak=-1.令Sn=a1+a2+…+an(n∈N*).
(I)求S6=2的概率;
(II)求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一種電腦屏幕保護(hù)畫(huà)面,只有符號(hào)“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q.若第k次出現(xiàn)“○”,則ak=1;出現(xiàn)“×”,則ak=-1.令Sn=a1+a2+…+an(n∈N*).
(1)當(dāng)p=q=
1
2
時(shí),求S6≠2的概率;
(2)當(dāng)p=
1
3
,q=
2
3
時(shí),求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一種電腦屏幕保護(hù)畫(huà)面,只有符號(hào)“○”和“×”,隨機(jī)地反復(fù)地出,每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”和“×”的概率都為
1
2
,若第k次出現(xiàn)“○”,則記ak=1,出現(xiàn)“×”,則記ak=-1,令sn=a1+a2+…+an,則S6≠2的概率為
49
64
49
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一種電腦屏幕保護(hù)畫(huà)面,只有符號(hào)“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q,若第k次出現(xiàn)“○”,則記;出現(xiàn)“×”,則記,令

   (I)當(dāng)時(shí),記,求的分布列及數(shù)學(xué)期望;

(II)當(dāng)時(shí),求的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案