在△ABC中,若∠A=
π
3
,b=2,S△ABC=3
3
,則
a
SinA
的值為
4
21
3
4
21
3
分析:先用面積公式計(jì)算出邊c的長(zhǎng),再用余弦定理計(jì)算出邊a的長(zhǎng),最后可得
a
SinA
=
4
21
3
解答:解:由正弦定理的面積公式得:S△ABC=
1
2
bcsinA=3
3

                        所以
1
2
×2csin
π
3
=3
3
,得c=6
     再根據(jù)余弦定理,得
                    a2=b2+c2-2bccosA=4+36-2×2×6×
1
2
=28

                    所以      a=2
7

       因此   
a
sinA
=
2
7
sin
π
3
=
4
21
3

故答案為:
4
21
3
點(diǎn)評(píng):本題考查了面積正弦定理與正、余弦定理相結(jié)合,從而達(dá)到解三角形的目的,屬于簡(jiǎn)單題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出命題:
①函數(shù)y=2sinx-cosx的值域是[-2,1];
②函數(shù)y=sinπxcosπx是周期為2的奇函數(shù);
x=-
3
4
π
是函數(shù)y=sin(x+
π
4
)
的一條對(duì)稱軸;
④若sin2α<0,cosα-sinα<0,則α一定為第二象限角;
⑤在△ABC中,若A>B則sinA>sinB.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若a=7,b=3,c=8,則其面積等于(  )
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若∠A=60°,∠B=45°,BC=
2
,則AC=
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題的個(gè)數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
)
,數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案