雙曲線(a>0,b>0)滿足如下條件:(1)ab=;(2)過右焦點F的直線l的斜率為,交y軸于點P,線段PF交雙曲線于點Q,且|PQ|:|QF|=2:1,求雙曲線的方程.
【答案】分析:首先設(shè)直線l:y=(x-c),并求出P點坐標(biāo);然后根據(jù)|PQ|:|QF|=2:1,求出Q點坐標(biāo),并代入雙曲線方程,再由a2+b2=c2,求出a2、b2即可.
解答:解:設(shè)直線l:y=(x-c),令x=0,得P(0,),
設(shè)λ=,Q(x,y),則有,
又Q()在雙曲線上,
∴b2c)2-a2(-c)2=a2b2
∵a2+b2=c2,∴,
解得=3,又由ab=,可得,
∴所求雙曲線方程為
點評:本題考查了雙曲線的標(biāo)準(zhǔn)方程和簡單性質(zhì),根據(jù)|PQ|:|QF|=2:1,求出Q點坐標(biāo)是解題的關(guān)鍵,同時要注意運算技巧,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16.已知F1、F2為雙曲線=1(a>0,b>0且a≠b)的兩個焦點,P為雙曲線右支上異于頂點的任意一點,O為坐標(biāo)原點.下面四個命題

(A)△PF1F2的內(nèi)切圓的圓心必在直線x=a上;

(B)△PF1F2的內(nèi)切圓的圓心必在直線x=b上;

(C)△PF1F2的內(nèi)切圓的圓心必在直線OP上;

(D)△PF1F2的內(nèi)切圓必通過點(a,0).

    其中真命題的代號是__________(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F、F為雙曲線(a>0,b>0)的焦點,過F作垂直于x軸的直線交雙曲線于點P,且∠PFF=30,求雙曲線的漸近線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O為坐標(biāo)原點,給定兩點A(1,0),B(0,—2),點C滿足,其中,且,

(1)求點C的軌跡方程;

(2)設(shè)點C的軌跡與雙曲線(a>0,b>0)相交于M、N兩點,且以MN為直徑的圓經(jīng)過原點,求證:為定值;

(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實軸長的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新課標(biāo)高三二輪復(fù)習(xí)綜合驗收(6)理科數(shù)學(xué)試卷 題型:選擇題

已知雙曲線(a>0,b>0)的兩個焦點為,點A在雙曲線第一象限的圖象上,若△的面積為1,且,則雙曲線方程為(    )

A.        B.

C.     D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆陜西省高二上學(xué)期期中文科數(shù)學(xué)試卷 題型:解答題

已知F1、F2為雙曲線a>0,b>0)的焦點,過F2作垂直于x軸的直線交雙曲線于點P,且∠PF1F2=30°.求雙曲線的離心率.

 

查看答案和解析>>

同步練習(xí)冊答案