求函數(shù)y=
1
2
arccos
x-1
的定義域和值域.
考點(diǎn):函數(shù)的定義域及其求法,函數(shù)的值域
專題:三角函數(shù)的求值
分析:利用反余弦函數(shù)的定義域求解函數(shù)的定義域,再利用反余弦函數(shù)的單調(diào)性即可求出函數(shù)的值域答案.
解答: 解:函數(shù)y=
1
2
arccos
x-1
有意義,必有:0≤x-1≤1,解得1≤x≤2,函數(shù)的定義域?yàn)閇1,2].
∵arccos
x-1
∈[0,
π
2
]
,
1
2
arccos
x-1
[0,
π
4
]

函數(shù)的定義域?yàn)椋篬1,2].
值域:[0,
π
4
]
點(diǎn)評(píng):本題考查反余弦函數(shù)的基本性質(zhì)的應(yīng)用.理解反三角函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-bcos3x(b<0)的最大值為
3
2
,最小值為-
1
2
,則y=sin(4a-b)πx的周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(3x+
4
)的圖象的一條對(duì)稱軸是( 。
A、x=-
π
12
B、x=-
π
4
C、x=
π
8
D、x=-
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的一個(gè)頂點(diǎn)為(0,-1),焦點(diǎn)在x軸上,右焦點(diǎn)到直線x-y+1=0的距離為
2

(1)求橢圓C的方程;
(2)過點(diǎn)F(1,0)作直線l與橢圓C交于不同的兩點(diǎn)A、B,
FA
=λ
FB
,T(2,0),λ∈[2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:△ABC中,a=
3
,b=3,∠B=60°,則∠A=( 。
A、
π
6
B、
π
3
C、
π
6
6
D、
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1
a
+
2
b
=1,(a>0,b>0)點(diǎn)(0,b)到直線x-2y-a=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-
π
3
)=
1
3
,且α為三角形一內(nèi)角,則cos(α+
π
6
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f′(x)>f(x)恒成立,若x1<x2,則ex1f(x2)與ex2f(x1)的大小關(guān)系為( 。
A、ex1f(x2)>ex2f(x1
B、ex1f(x2)<ex2f(x1
C、ex1f(x2)=ex2f(x1
D、ex1f(x2)與ex2f(x1)的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,上頂點(diǎn)(0,b)在直線x+y-1=0上.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓Γ交于A,B兩點(diǎn)(A,B不是橢圓Γ的頂點(diǎn)).點(diǎn)C在橢圓Γ上,且AC⊥AB,直線BC與x軸、y軸分別交于P,Q兩點(diǎn).
(i)設(shè)直線BC,AP的斜率分別為k1,k2,問是否存在實(shí)數(shù)t,使得k1=tk2?若存在,求出t的值;若不存在,請(qǐng)說明理由;
(ii)求△OPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案