【題目】在如圖所示的四棱錐中,四邊形為平行四邊形,為邊長為2的等邊三角形,,點分別為,的中點,是異面直線的公垂線.

1)證明:平面平面;

2)記的重心為,求直線與平面所成角的正弦值.

【答案】1)詳見解析;(2

【解析】

1的中點,利用等邊三角形的性質(zhì)可得,根據(jù)是異面直線的公垂線,可得.可得平面.進而得出:平面平面

2)根據(jù),為中點,可得,又是異面直線的公垂線,可得,可得:平面.建立如圖所示的空間直角坐標系.設平面的一個法向量為,可得,由,的坐標可得的重心.設直線與平面所成角為,則,

解:(1)證明:因為的中點,所以在等邊中,

又因為是異面直線的公垂線,所以

又因為,平面,所以平面

因為平面,所以平面平面

2)因為為中點,所以,又因為是異面直線的公垂線,

所以,,所以為等腰直角三角形

連接,

因為,平面,平面平面且平面平面

所以平面

因此,以為原點,分別以、所在的直線為、、軸建系如圖所示:

,

因為四邊形為平行四邊形,設

因為,所以

所以

設面的一個法向量為

,

,則,,所以

因為,,

所以的重心為的坐標為,

設直線與平面所成角為,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個月的工資超過4000

C.由此圖可以估計,該銷售人員20206,78月的平均工資將會超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,cdR,矩陣A 的逆矩陣A1.若曲線C在矩陣A對應的變換作用下得到直線y2x1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘數(shù)學家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點,距離之比為常數(shù)的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內(nèi)運動,則點所形成的阿氏圓的半徑為________;若點在長方體內(nèi)部運動,為棱的中點,的中點,則三棱錐的體積的最小值為___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、共七組,其頻率分布直方圖如圖所示,已知.

1)求頻率分布直方圖中、的值;

2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形,且ABDC,,平面平面

(Ⅰ)證明:平面平面;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的圖象在點處的切線方程;

2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,、分別為棱、的中點,.

1)證明:平面平面;

2)若二面角的大小為45°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案