已知數(shù)列{an}各項均不為0,其前n項和為Sn,且對任意n∈N*都有(1-p)Sn=p-pan(p為大于1的常數(shù)),則an=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    pn
  4. D.
    pn-1
C
分析:由(1-p)Sn=p-pan得(1-p)Sn+1=p-pan+1兩式相減得an+1=pan,又把n=1代入(1-p)Sn=p-pan得(1-p)a1=p-pa1,解得a1=p,故數(shù)列是以p為首項,p為公比的等比數(shù)列,由等比數(shù)列的通項公式可求答案.
解答:∵對任意n∈N*(1-p)Sn=p-pan,①
∴(1-p)Sn+1=p-pan+1
②-①得,∴(1-p)an+1=-pan+1+pan
即an+1=pan,,把n=1代入(1-p)Sn=p-pan得(1-p)a1=p-pa1,解得a1=p
故數(shù)列{an}是以p為首項,p為公比的等比數(shù)列.(p為大于1的常數(shù))
故數(shù)列的通項公式為an=p×pn-1=pn,
故選C.
點評:本題為數(shù)列通項公式的求解,通過題意得出數(shù)列是以p為首項,p為公比的等比數(shù)列是解決問題的關(guān)鍵,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均不為0,其前n項和為Sn,且對任意n∈N*都有(1-p)Sn=p-pan(p為大于1的常數(shù)),則an=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均為正數(shù),觀察下面的程序框圖
(1)若d≠0,分別寫出當k=2,k=3時s的表達式.
(2)當輸入a1=d=2,k=100 時,求s的值( 其中2的高次方不用算出).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•資陽一模)已知數(shù)列{an}各項為正數(shù),前n項和Sn=
1
2
an(an+1)

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1=bn+3an,求數(shù)列{bn}的通項公式;
(3)在(2)的條件下,令cn=
3an
2
b
2
n
,數(shù)列{cn}前n項和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均不為0,其前n項和為Sn,且對任意n∈N*都有(1-p)Sn=p-pan(p≠±1的常數(shù)),記f(n)=
1+
C
1
n
a1+
C
2
n
a2+…+
C
n
n
an
2nSn

(Ⅰ)求an;
(Ⅱ)求
lim
n→∞
f(n+1)
f(n)

(Ⅲ)當p>1時,設bn=
p+1
2p
-
f(n+1)
f(n)
,求數(shù)列{pk+1bkbk+1}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}各項均為正數(shù),滿足n
a
2
n
+(1-n2)a n-n=0

(1)計算a1,a2,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{
an
2n
}
的前n項和Sn

查看答案和解析>>

同步練習冊答案