如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求證:平面AEC⊥平面ABE;
(2)點(diǎn)F在BE上.若DE∥平面ACF,求的值.
(1)見解析 (2)
【解析】
(1)證明 因?yàn)?/span>ABCD為矩形,所以AB⊥BC.
因?yàn)槠矫?/span>ABCD⊥平面BCE,
平面ABCD∩平面BCE=BC,AB?平面ABCD,
所以AB⊥平面BCE.
因?yàn)?/span>CE?平面BCE,所以CE⊥AB.
因?yàn)?/span>CE⊥BE,AB?平面ABE,BE?平面ABE,AB∩BE=B,
所以CE⊥平面ABE.
因?yàn)?/span>CE?平面AEC,所以平面AEC⊥平面ABE.
(2)解 連接BD交AC于點(diǎn)O,連接OF.
因?yàn)?/span>DE∥平面ACF,DE?平面BDE,平面ACF∩平面BDE=OF,
所以DE∥OF.
又因?yàn)榫匦?/span>ABCD中,O為BD中點(diǎn),
所以F為BE中點(diǎn),即=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用6練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=2sin(ωx+φ)(ω>0)的圖象關(guān)于直線x=對(duì)稱,且f =0,則ω的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用2練習(xí)卷(解析版) 題型:填空題
已知[x]表示不超過實(shí)數(shù)x的最大整數(shù),如[1.8]=1,[-1.2]=-2.x0是函數(shù)f(x)=ln x-的零點(diǎn),則[x0]=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
從長度分別為2,3,4,5的四條線段中任意取出三條,則以這三條線段為邊可以構(gòu)成三角形的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用21練習(xí)卷(解析版) 題型:填空題
某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個(gè)容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用20練習(xí)卷(解析版) 題型:填空題
設(shè)a,b是兩條直線,α,β是兩個(gè)平面,則下列4組條件中所有能推得a⊥b的條件是________(填序號(hào)).
①a?α,b∥β,α⊥β;②a⊥α,b⊥β,α⊥β;
③a?α,b⊥β,α∥β;④a⊥α,b∥β,α∥β.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用1練習(xí)卷(解析版) 題型:填空題
已知函數(shù)y=f(x)是R上的偶函數(shù),對(duì)?x∈R都有f(x+4)=f(x)+f(2)成立.當(dāng)x1,x2∈[0,2],且x1≠x2時(shí),都有<0,給出下列命題:
①f(2)=0;
②直線x=-4是函數(shù)y=f(x)圖象的一條對(duì)稱軸;
③函數(shù)y=f(x)在[-4,4]上有四個(gè)零點(diǎn);
④f(2 014)=0.
其中所有正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用18練習(xí)卷(解析版) 題型:解答題
已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0及Sn=a1+a2+a3+…+an;
(2)試比較Sn與(n-2)2n+2n2的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用12練習(xí)卷(解析版) 題型:填空題
設(shè)橢圓C∶=1(a>b>0)恒過定點(diǎn)A(1,2),則橢圓的中心到準(zhǔn)線的距離的最小值________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com