A. | [$\frac{2}{3}$,5] | B. | [$\frac{3}{2}$,11] | C. | [$\frac{1}{5}$,$\frac{2}{3}$] | D. | [$\frac{1}{5}$,$\frac{3}{2}$] |
分析 畫出約束條件的可行域,化簡目標(biāo)函數(shù),利用目標(biāo)函數(shù)的幾何意義,求解z的斜率范圍.
解答 解:不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{4x+3y≤12}\end{array}\right.$表示的區(qū)域如圖,
則z=$\frac{x+2y+3}{x+1}$=1+2$\frac{y+1}{x+1}$的幾何意義是可行域內(nèi)的點(diǎn)與點(diǎn)(-1,-1)構(gòu)成的直線的斜率的2倍加1的問題.
當(dāng)取得點(diǎn)A(0,4)時(shí),
則z=$\frac{x+2y+3}{x+1}$的值為11,
當(dāng)取得點(diǎn)B(3,0)時(shí),
則z=$\frac{x+2y+3}{x+1}$的取值為$\frac{3}{4}$,
所以答案為[$\frac{3}{4}$,11],
故選:B.
點(diǎn)評(píng) 本題利用直線斜率的幾何意義,求可行域中的點(diǎn)與原點(diǎn)的斜率.本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [6} | B. | {5} | C. | {1,2,3,4} | D. | {5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=-x2+1 | C. | y=-e-x-ex | D. | y=sinx |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com