在直角坐標系中,已知點P(x,y).O為坐標原點.
(1)若
x=a+rcosθ
y=b+rsinθ
(其中a、b、r是常數(shù),且r>0),求證:(x-a)2+(y-b)2=r2
(2)若點A(2,4),M(2x-1,22y-1),N(4y,2x),
OP
AP
=-1
,求u=
ON
OM
的取值范圍.
(1)由cos2θ+cos2θ=1 消去θ即得 (x-a)2+(y-b)2=r2
(2)由
OP
AP
=-1
,可得 x(x-2)+y(y-4)=-1,∴(x-1)2+(y-2)2=4.
令x=1+2cosθ,y=2+2sinθ,又u=
ON
OM
=2x-1•4y +22y-1•2x =2x+2y ,
又x+2y=5+2cosθ+4sinθ=5+2
5
 sin(θ+∅),cos∅=
2
5
,sin∅=
1
5
,
5-2
5
≤x+2y≤5+2
5
,∴u的取值范圍為[25-2
5
25+2
5
]
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,已知△ABC的三個頂點的坐標,求:
(1)直線AB的一般式方程;
(2)AC邊上的高所在直線的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知射線OA:x-y=0(x≥0),OB:x+
3
y=0(x≥0),過點P(1,0)作直線分別交射線OA,OB于A,B點.
(1)當AB中點為P時,求直線AB的方程;
(2)在(1)的條件下,若A、B兩點到直線l:y=mx+2的距離相等,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知A(cosx,sinx),B=(1,1),O為坐標原點,
OA
+
OB
=
OC
,f(x)=|
OC
|
2

(Ⅰ)求f(x)的對稱中心的坐標及其在區(qū)間[-π,0]上的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x0)=3+
2
,x0∈[
π
2
,
4
]
,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•普陀區(qū)一模)在直角坐標系中,已知點列P1(1,-
1
2
),P2(2,
1
22
),P3(3,-
1
23
),…,Pn(n,(-
1
2
)n
),…,其中n是正整數(shù).連接P1 P2的直線與x軸交于點X1(x1,0),連接P2 P3的直線與x軸交于點X2(x2,0),…,連接Pn Pn+1的直線與x軸交于點Xn(xn,0),….
(1)求數(shù)列{an}的通項公式;
(2)依次記△X1P2X2的面積為S1,△X2P3X3的面積為S3,…,△XnPn+1Xn的面積為Sn,…試求無窮數(shù)列{Sn}的各項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,已知射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),過點P(a,0)(a>0)作直線l分別交射線OA,OB于A,B兩點,且
AP
=2
PB
,則直線l的斜率為
 

查看答案和解析>>

同步練習冊答案