設(shè)是定義在上的奇函數(shù),且當(dāng)時,。若對任意的,不等式恒成立,則實數(shù)的取值范圍是         
解:當(dāng)x≥0時,f(x)=x2
∵函數(shù)是奇函數(shù)
∴當(dāng)x<0時,f(x)="-" x2
∴f(x)=
x2  x≥0
- x2 x<0  ,
∴f(x)在R上是單調(diào)遞增函數(shù),
且滿足2f(x)=f(  x),
∵不等式f(x+t)≥2f(x)=f(x)在[t,t+2]恒成立,
∴x+t≥  x在[t,t+2]恒成立,
即:x≤(1+)t在[t,t+2]恒成立,
∴t+2≤(1+)t
解得:t≥  ,
故答案為:[,+∞).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域為的單調(diào)函數(shù)是奇函數(shù),當(dāng)時,.
(1)求的解析式;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù).
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,試判斷的大小關(guān)系,并證明你的結(jié)論;
(Ⅲ) 當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分14分)設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若當(dāng)時,(其中不等式恒成立,求實數(shù)m的取值范圍;
(3)試討論關(guān)于x的方程:在區(qū)間[0,2]上的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是定義在R上的奇函數(shù),,當(dāng)時,有恒成立,
則不等式的解集是
A.(,)∪(,B.()∪(,
C.(,)∪(,D.(,)∪(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),對于任意實數(shù),都有   ,則實數(shù)的取值范圍是                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在實數(shù)集上是減函數(shù),若,則下列正確的是   (  )
A.    
B.
C.    
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點,,當(dāng)取最小值時,的值等于(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),的單調(diào)減區(qū)間為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案