10.函數(shù)f(x)=x3-x+2在下列區(qū)間內(nèi)一定存在零點(diǎn)的是( 。
A.(1,2)B.(0,1)C.(-2,-1)D.(-1,0)

分析 根據(jù)函數(shù)零點(diǎn)的判斷條件,求出函數(shù)在區(qū)間端點(diǎn)處的符號(hào)相反即可得到結(jié)論.

解答 解:f(-2)=-8+2+2=-4<0,f(-1)=-1+1+2=2>0,
則函數(shù)f(x)在(-2,-1)上存在零點(diǎn),
故選:C

點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)區(qū)間的判斷,根據(jù)函數(shù)零點(diǎn)存在判斷條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.關(guān)于函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{6}$),x∈R,下列結(jié)論中正確的個(gè)數(shù)是( 。
①若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
②函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{12}$對(duì)稱;
③函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域?yàn)閇-$\frac{3}{2},\frac{3}{2}$];
④函數(shù)f(x)的解析式可寫(xiě)為f(x)=$\sqrt{3}sin(2x+\frac{2π}{3})$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=xex-5.
(1)試求函數(shù)f(x)的單調(diào)區(qū)間及最值
(2)設(shè)函數(shù)g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四個(gè)實(shí)數(shù)根,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.“k=1”是“直線y=x+k與圓x2+y2=1相交”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知三棱錐A-BCD,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),若AC=BD,則四邊形EFGH為( 。
A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=aInx+\frac{1}{x}(a∈R)$
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)的極值;
(2)如果函數(shù)g(x)=f(x)-2x在(0,+∞)上單調(diào)遞減,求a的取值范圍;
(3)當(dāng)a>0時(shí),討論函數(shù)y=f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{{\sqrt{6}}}{3}$,點(diǎn)(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線互相垂直.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓C與直線y=kx+m相交于不同的兩點(diǎn)M,N,點(diǎn)D(0,-1),當(dāng)|DM|=|DN|時(shí),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)函數(shù)f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在區(qū)間[-2015,2015]上的最大值與最小值之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已函數(shù)f(x)=|x+1|+|x-3|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若不等式f(x)≤ax的解集非空,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案