若向量
a
b
的夾角都是60°,且|
a
|=|
b
|=1

(1)求(
a
-2
b
)•(
a
+
b
)
的值;
(2)求(
a
-2
b
)
(
a
+
b
)
夾角的余弦值.
(1)(
a
-2
b
)•(
a
+
b
)=|
a
|2-
a
b
-2|
b
|2=1-
1
2
-2=-
3
2
;
(2)設夾角為θ,則cosθ=
(
a
-2
b
)•(
a
+
b
)
|
a
-2
b
||
a
+
b
|

|
a
-2
b
|2=(
a
-2
b
)2=|
a
|2-4
a
b
+4|
b
|2=3

|
a
+
b
|2=(
a
+
b
)2=|
a
|2+2
a
b
+|
b
|2=3

cosθ=
-
3
2
3
3
=-
1
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果命題“?p”與命題“p或q”都是真命題,那么命題q一定是真命題;
②已知向量
a
,
b
滿足|
a
|=1,|
b
|=4
,且
a
b
=2
,則
a
b
的夾角為
π
6
;
③若函數(shù)f(x+1)是奇函數(shù),f(x-1)是偶函數(shù),且f(0)=2,則f(2012)=2;
④已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù),函數(shù)g(x)=log4(a•2x-
4
3
a)
,若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有且只有一個公共點,則實數(shù)a的取值范圍是(1,+∞).
其中正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意兩個非零的平面向量
α
β
,定義
α
?
β
=
α
β
β
β
,若平面向量
a
,
b
滿足|
a
|≥|
b
|>0,
a
b
的夾角θ∈(0,
π
3
),且
a
?
b
b
?
a
都在集合{
n
2
|n∈Z}
中,則
a
b
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣東)對任意兩個非零的平面向量
α
β
,定義
α
β
=
α
β
β
β
.若兩個非零的平面向量
a
,
b
滿足
a
b
的夾角θ∈(
π
4
π
2
)
,且
a
b
b
a
都在集合{
n
2
|n∈Z}
中,則
a
b
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
b
的夾角都是60°,且|
a
|=|
b
|=1

(1)求(
a
-2
b
)•(
a
+
b
)
的值;
(2)求(
a
-2
b
)
(
a
+
b
)
夾角的余弦值.

查看答案和解析>>

同步練習冊答案