3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中點(diǎn),則|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=( 。
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

分析 以BA,BC所在的直線為y,x軸,建立如圖所示的坐標(biāo)系,根據(jù)向量的坐標(biāo)運(yùn)算和向量的模的計(jì)算即可求出

解答 解:以BA,BC所在的直線為y,x軸,建立如圖所示的坐標(biāo)系,
則B(0,0),A(0,1),C(1,0),D(2,1),
∵P是DC的中點(diǎn),
∴P($\frac{3}{2}$,$\frac{1}{2}$),
∴$\overrightarrow{PA}$=($\frac{3}{2}$,-$\frac{1}{2}$),$\overrightarrow{PB}$=($\frac{3}{2}$,$\frac{1}{2}$),
∴$\overrightarrow{PA}$+2$\overrightarrow{PB}$=($\frac{3}{2}$,-$\frac{1}{2}$)+2($\frac{3}{2}$,$\frac{1}{2}$)=($\frac{9}{2}$,$\frac{1}{2}$),
∴|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=$\sqrt{\frac{81}{4}+\frac{1}{4}}$=$\frac{\sqrt{82}}{2}$,
故選:A.

點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算和向量的模的計(jì)算,關(guān)鍵是建立坐標(biāo)系,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD,E為AD的中點(diǎn),異面直線AP與CD所成的角為90°.
(Ⅰ)證明:△PBE是直角三角形;
(Ⅱ)若二面角P-CD-A的大小為45°,求二面角A-PE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.tan40°+tan80°-$\sqrt{3}$tan40°tan80°的值是( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“a=-1”是“直線ax+3y+3=0與直線x+(a-2)y-3=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.二面角α-AB-β的平面角是銳角θ,M∈α,MN⊥β,N∈β,C∈AB,∠MCB為銳角,則( 。
A.∠MCN<θB.∠MCN=θ
C.∠MCN>θD.以上三種情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)=sin4ωx-cos4ωx(ω>0)的值域?yàn)锳,若對任意a∈R,存在x1,x2∈R且x1<x2,使得{y|y=f(x),a≤x≤a+2}=[f(x1),f(x2)]=A,設(shè)x2-x1的最小值為g(ω),則g(ω)的值域?yàn)椋?,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,PA與四邊形ABCD所在平面垂直,且PA=BC=CD=BD,AB=AD,PD⊥DC.
(1)求證:AB⊥BC;
(2)若PA=$\sqrt{3}$,E為PC的中點(diǎn),求三棱錐EABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某河道中過度滋長一種藻類,環(huán)保部門決定投入生物凈化劑凈化水體.因技術(shù)原因,第t分鐘內(nèi)投放凈化劑的路徑長度p=140-|t-40|(單位:m),凈化劑凈化水體的寬度q(單位:m)是時(shí)間t(單位:分鐘)的函數(shù):q(t)=1+a2t(a由單位時(shí)間投放的凈化劑數(shù)量確定,設(shè)a為常數(shù),且a∈N*).
(1)試寫出投放凈化劑的第t分鐘內(nèi)凈化水體面積S(t)(1≤t≤60,t∈N*)的表達(dá)式;
(2)求S(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx-$\sqrt{3}$(cos2x-sin2x).
(1)求f(x)的最小正周期;
(2)若f(x0)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求x0的值.

查看答案和解析>>

同步練習(xí)冊答案