3.若曲線y=a|x|與y=x+a有兩個(gè)公共點(diǎn),則a的取值范圍是(-∞,-1)∪(1,+∞).

分析 由題意可知,a=0不成立;然后分a>0和a<0作出兩個(gè)函數(shù)的圖象,數(shù)形結(jié)合得答案.

解答 解:若a=0,則兩曲線分別為y=0與y=x,不合題意;
若a>0,畫(huà)出兩函數(shù)圖象如圖:

若曲線y=a|x|與y=x+a有兩個(gè)公共點(diǎn),則a>1;
若a<0,畫(huà)出兩函數(shù)圖象如圖:

若曲線y=a|x|與y=x+a有兩個(gè)公共點(diǎn),則a<-1.
綜上,a的取值范圍是(-∞,-1)∪(1,+∞).
故答案為:(-∞,-1)∪(1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的圖象,考查函數(shù)零點(diǎn)的判定,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=x3-2x+ex-$\frac{1}{{e}^{x}}$,其中e是自然對(duì)數(shù)的底數(shù).若f(a-1)+f(2a2)≤0.則實(shí)數(shù)a的取值范圍是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,曲線y=x2+mx-2與x軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1),當(dāng)m變化時(shí),解答下列問(wèn)題:
(1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由;
(2)證明過(guò)A、B、C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若x=-2是函數(shù)f(x)=(x2+ax-1)ex-1的極值點(diǎn),則f(x)的極小值為( 。
A.-1B.-2e-3C.5e-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax2-ax-xlnx,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}滿足a1=2,an+1=2an+2n+1(n∈N*).
(1)若bn=$\frac{{a}_{n}}{{2}^{n}}$,證明:數(shù)列{bn}為等差數(shù)列,并求出數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知△ABC的面積為$5\sqrt{3},A=\frac{π}{6},AB=5$,則BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,已知平面四邊形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC與BD交于點(diǎn)O,記I1=$\overrightarrow{OA}$•$\overrightarrow{OB}$,I2=$\overrightarrow{OB}$•$\overrightarrow{OC}$,I3=$\overrightarrow{OC}$•$\overrightarrow{OD}$,則( 。
A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F,離心率為$\sqrt{2}$.若經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案