已知雙曲線的左、右焦點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且|PF2|=|F1F2|,則等于( )
A.24
B.48
C.50
D.56
【答案】分析:設(shè)點(diǎn)P的坐標(biāo)為(m,n),其中m>2,根據(jù)點(diǎn)P在雙曲線上且|PF2|=|F1F2|,建立關(guān)于m、n的方程組,解之得m、n的值,從而得到向量、的坐標(biāo),利用向量數(shù)量積的坐標(biāo)公式,可算出的值.
解答:解:根據(jù)雙曲線方程,
得a2=4,b2=5,c==3,所以雙曲線的焦點(diǎn)分別為F1(-3,0)、F2(3,0),
設(shè)點(diǎn)P的坐標(biāo)為(m,n),其中m>2,則
∵點(diǎn)P在雙曲線上,且|PF2|=|F1F2|,
,解之得m=,n=±
=(-3-m,-n),=(3-m,-n)
=(-3-m)(3-m)+(-n)(-n)=m2-9+n2=-9+=50
故選C
點(diǎn)評(píng):本題給出雙曲線上一點(diǎn)到右焦點(diǎn)的距離恰好等于焦距,求該點(diǎn)指向兩個(gè)焦點(diǎn)向量的數(shù)量積,著重考查了向量的數(shù)量積和雙曲線的簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣西桂林市高三第一次聯(lián)合調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且的面積等于   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣西桂林市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且的面積等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案