(文)數(shù)列(n∈N*)中,,且,又設(shè)

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)求數(shù)列的通項(xiàng)公式;

(Ⅲ)設(shè)(n∈N*),求數(shù)列的前n項(xiàng)和

答案:
解析:

(Ⅰ)證明:∵,

,

∴數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列.

(Ⅱ),由(Ⅰ)得,∴

(Ⅲ)由(Ⅱ)可得,利用錯(cuò)位相減法可得,(n∈N*).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+bn=0(n∈N*)的兩根,且a1=1.
(1)求數(shù)列和{bn}的通項(xiàng)公式;  
(2)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,問(wèn)是否存在常數(shù)λ,使得bn-λSn>0對(duì)任意n∈N*都成立,若存在,求出λ的取值范圍; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)二模)(文)已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)于任意n∈N*,總有Sn=2(an-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成等差數(shù)列,當(dāng)公差d滿足3<d<4時(shí),求n的值并求這個(gè)等差數(shù)列所有項(xiàng)的和T;
(3)記an=f(n),如果cn=n•f(n•log
2
m)
(n∈N*),問(wèn)是否存在正實(shí)數(shù)m,使得數(shù)列{cn}是單調(diào)遞減數(shù)列?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年銀川一中一模文) (12分)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn(n∈N*).

   (1)求數(shù)列{an}的通項(xiàng)an;

   (2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以數(shù)列{an}的任意兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+8的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*,b1≠0)且a1=1.

(文)求數(shù)列{bn}的前n項(xiàng)和Tn.

(理)求數(shù)列{an}的前n項(xiàng)和Sn和數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案