已知函數(shù)(xÎ [2,+∞)),求f(x)的最小值.

答案:略
解析:

解:將函數(shù)式化為:,下證[2,+∞)上是增函數(shù).

任取,且

,∴,

又∵,,∴,

,即:

f(x)[2,+∞)上是增函數(shù).

當(dāng)x=2時,f(x)有最小值


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3 700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x+5 000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
(3)求邊際利潤函數(shù)MP(x)的單調(diào)遞減區(qū)間,并說明單調(diào)遞減在本題中的實際意義是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某造船公司年最高造船量是20艘,已知造船x艘的產(chǎn)值為R(x)=3700x+45x2-10x3(萬元),成本函數(shù)為C(x)=460x+5000(萬元).又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為M f(x)=f(x+1)-f(x)求:
(1)利潤函數(shù)p(x)及邊際利潤函數(shù)M p(x);
(2)年造船量安排多少艘時,可使公司造船的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+3x2+9x+a(a為常數(shù)),在區(qū)間[-2,2]上有最大值20,那么此函數(shù)在區(qū)間[-2,2]上的最小值為
-7
-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•自貢一模)已知函數(shù)f(x)=2ln3x+8x,則
lim
n→∞
f(1-2△x)-f(1)
△x
的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x+y≥2
x-y≤2
0≤y≤3
,則目標(biāo)函數(shù)z=y-x的最大值為
4
4

查看答案和解析>>

同步練習(xí)冊答案