如圖,已知四棱錐中,側(cè)棱平面,底面是平行四邊形,,,,分別是的中點.
(1)求證:平面
(2)當(dāng)平面與底面所成二面角為時,
求二面角的大。
解:
(1)證明:∵平面,∴的射影是,的射影是,
∵∴∴,且,
∴是直角三角形,且,…………………………………3分
∴,∵平面,∴,
且,∴平面……………………………………………………………6分
(2)解法1:由(1)知,且是平行四邊形,可知,
又∵平面,由三垂線定理可知,,
又∵由二面角的平面角的定義可知,是平面與底面所成二面角,故,故在中,,∴,,
從而又在中,,
∴在等腰三角形,分別取中點和中點,連接,和,
∴中位線,且平面,∴平面,
在中,中線,由三垂線定理知,,
為二面角的平面角,
在中,,,
,,
∴二面角的大小為.
解法2:由(Ⅰ)知,以點為坐標(biāo)原點,以、、
所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,
,,,
則,,
設(shè)平面的一個法向量為,
則由
又是平面的一個法向量,
平面與底面所成二面角為
,解得,
設(shè)平面的一個法向量為,
則由.
又是平面的一個法向量,
設(shè)二面角的平面角為,則
,∴ ∴
∴二面角的大小為.…………………….…….……12分
科目:高中數(shù)學(xué) 來源:2015屆浙江紹興一中高二第一學(xué)期期中測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知四棱錐中,底面是直角梯形,,,,,平面,.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若是的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省高一下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)
如圖,已知四棱錐中,底面,四邊形是直角梯形,,,,
(1)證明:;
(2)在線段上找出一點,使平面,
指出點的位置并加以證明;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林十八中高三第二次月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐中,側(cè)棱平面,底面是平行四邊形,,,,分別是的中點.
(1)求證:平面
(2)當(dāng)平面與底面所成二面角為時,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測試文科數(shù)學(xué)試卷 題型:解答題
如圖,已知四棱錐中,底面是直角梯形,,,,,平面,.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)若是的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省淮安市高二上學(xué)期期末模擬考試(四)數(shù)學(xué) 題型:解答題
如圖,已知四棱錐中,底面是直角梯形,是線段上不同于的任意一點,且
(1)求證:;
(2)求證:;
(3)求三棱錐的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com