已知(x+i)(1-i)=y,求實數(shù)x,y值.
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)相等即可求得實數(shù)x,y值.
解答: 解:∵(x+i)(1-i)=(x+1)+(1-x)i=y,
x+1=y
1-x=0

解得:x=1,y=2.
點評:本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)相等的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,執(zhí)行相應(yīng)的程序,若輸入x=4,則輸出y的值為( 。
A、-
1
2
B、-
3
4
C、-
5
4
D、-
13
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,離心率為
2
2
,過點F且與x軸垂直的直線被橢圓截得的線段長為
2
,O為坐標(biāo)原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點M(0,2)的直線AB交橢圓C于A、B兩點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 
4
1
(x2-x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C;y2=2px(p>0)過點A(1,-2);
(1)求拋物線C的方程,并求其準(zhǔn)線方程;
(2)是否存在平行于OA(O為坐標(biāo)原點)的直線l,使直線l與拋物線C有公共點,直線OA與l的距離等于
5
5
?若存在,求出直線l的方程,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y-1=0與圓C:x2+y2=13交于A(x1,y1),B(x2,y2)兩點(x1>x2).
(Ⅰ)求交點A,B的坐標(biāo);
(Ⅱ)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若x>1,求x+
1
x-1
的最小值.
(2)設(shè)0<x<1,a>0,b>0,a,b為常數(shù),求
a2
x
+
b2
1-x
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項和,首項為a1,公差d≠0,
(1)用a1,d表示
1
3
S3
1
4
S4,
1
5
S5
(2)已知
1
3
S3,
1
4
S4的等比中項為
1
5
S5
1
3
S3,
1
4
S4的等差中項為1.求a1,d;
(3)寫出{an}的通項公式.
(注:等差數(shù)列的前n項和公式為Sn=na1+
n(n-1)
2
d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點為F(0,1),且過點A(2,t),求t的值.

查看答案和解析>>

同步練習(xí)冊答案