(1)求過點O、F,并且與橢圓的左準(zhǔn)線l相切的圓的方程;
(2)設(shè)過點F且不與坐標(biāo)軸垂直的直線交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標(biāo)的取值范圍.
解:(1)∵a2=2,b2=1,
∴c=1,F(-1,0),l:x=-2
∵圓過點O、F,
∴圓心M在直線x=上.
設(shè)M(,t),則圓半徑
r=|()-(-2)|=.
由|OM|=r,得,
解得t=±.
∴所求圓的方程為(x+)2+(y±)2=.
(2)設(shè)直線AB的方程為y=k(x+1)(k≠0),
代入+y2=1,整理得(1+2k2)x2+4k2x+2k2-2=0.
∵直線AB過橢圓的左焦點F,
∴方程有兩個不等實根.
記A(x1,y1),B(x2,y2),AB中點N(x0,y0),
則x1+x2=,
∴AB的垂直平分線NG的方程為y-y0=(x-x0).
令y=0,得xG=x0+ky0=.
∵k≠0,∴-12<xG<0,
∴點G橫坐標(biāo)的取值范圍為(,0).
科目:高中數(shù)學(xué) 來源: 題型:
(1)設(shè)直線AB與直線OM的斜率分別為k1、k2,且k1·k2=,求橢圓的離心率;
(2)若直線AB經(jīng)過橢圓的右焦點F,且四邊形OACB是平行四邊形,求直線AB斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省莆田市仙游一中、六中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江西省名校高考數(shù)學(xué)信息卷1(理科)(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年東北三省長春、哈爾濱、沈陽、大連第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年吉林省長春市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com