在四棱錐P -ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.

(1)求四棱錐的體積.
(2)若E是PB的中點,求異面直線DE與PA所成角的余弦值.

(1)2    (2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
 
(1)證明:平面A1AC⊥平面AB1B;
(2)若點P為B1C1的中點,求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉一周所成幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐PABCD的正視圖是一個底邊長為4、腰長為3的等腰三角形,如圖分別是四棱錐PABCD的側視圖和俯視圖.

(1)求證:ADPC;
(2)求四棱錐PABCD的側面PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點EF分別在邊CD、CB上,點E與點CD不重合,EFACEFACO.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求證:BD⊥平面POA;
(2)記三棱錐PABD的體積為V1,四棱錐PBDEF的體積為V2,求當PB取得最小值時V1V2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,E是以AB為直徑的半圓上異于點A、B的點,矩形ABCD所在的平面垂直于該半圓所在的平面,且AB=2AD=2

(1)求證:
(2)設平面與半圓弧的另一個交點為
①試證:
②若求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了并流入杯中,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由。(冰、水的體積差異忽略不計)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

用一個平行于圓錐底面的平面截這個圓錐,截得圓臺上、下底面的面積之比為1∶16,截去的圓錐的母線長是3cm,求圓臺的母線長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是某三棱柱被削去一個底面后的直觀圖、側(左)視圖與俯視圖.已知CF=2AD,側視圖是邊長為2的等邊三角形,俯視圖是直角梯形,有關數(shù)據(jù)如圖所示.求該幾何體的體積.

查看答案和解析>>

同步練習冊答案