已知點,求

(1)線段的垂直平分線方程;                    

(2)過點(1,2)與線段平行的直線方程。

 

【答案】

(1)

AB中點坐標(biāo)為(1,1),   

(2)  即

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點B′為圓A:(x-1)2+y2=8上任意一點、點B(-1,0).線段BB′的垂直平分線和線段AB′相交于點M.
(1)求點M的軌跡E的方程;
(2)已知點M(x0,y0)為曲線E上任意一點.求證:點P(
3x0-2
2-x0
4y0
2-x0
)
關(guān)于直線x0x+2y0y=2的對稱點為定點、并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是圓M:x2+(y+m)2=8(m>0,m≠
2
)上一動點,點N(0,m)是圓M所在平面內(nèi)一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(Ⅰ)當(dāng)P在圓M上運動時,記動點Q的軌跡為曲線Γ,判斷曲線Γ為何種曲線,并求出它的標(biāo)準(zhǔn)方程;
(Ⅱ)過原點斜率為k的直線交曲線Γ于A,B兩點,其中A在第一象限,且它在y軸上的射影為點C,直線BC交曲線Γ于另一點D,記直線AD的斜率為k′.是否存在m,使得對任意的k>0,都有|k•k′|=1?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)已知點A(1,0),P1、P2、P3是平面直角坐標(biāo)系上的三點,且|AP1|、|AP2|、|AP3|成等差數(shù)列,公差為d,d≠0.
(1)若P1坐標(biāo)為(1,-1),d=2,點P3在直線3x-y-18=0上時,求點P3的坐標(biāo);
(2)已知圓C的方程是(x-3)2+(y-3)2=r2(r>0),過點A的直線交圓于P1、P3兩點,P2是圓C上另外一點,求實數(shù)d的取值范圍;
(3)若P1、P2、P3都在拋物線y2=4x上,點P2的橫坐標(biāo)為3,求證:線段P1P3的垂直平分線與x軸的交點為一定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)已知點M(x,y)與點A1(-1,0),A2(1,0)連線的斜率之積為3.
(I)求點M的軌跡方程;
(II)是否存在點M(x,y)(x>1),使M(x,y)到點B(-2,0)和點C(0,2)的距離之和最?若存在,求出點M(x,y)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省期末題 題型:解答題

(選做題)
A.如圖,AD是∠BAD的角平分線,⊙O過點A且與BC邊相切于點D,與AB,AC分別交于E、F兩點.求證:EF∥BC.
B.已知M=,求M﹣1
C.已知直線l的極坐標(biāo)方程為(ρ∈R),它與曲線C為參數(shù))相較于A、B兩點,求AB的長.
D.設(shè)函數(shù)f(x)=|x﹣2|+|x+2|,若不等式|a+b|﹣|4a﹣b|≤|a|,f(x)對任意a,b∈R,且a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案