如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動點(diǎn),F(xiàn)是AB中點(diǎn),AC=BC=2,AA1=4.
(Ⅰ)求證:CF⊥平面ABB1;
(Ⅱ)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1

【答案】分析:(Ⅰ)欲證CF⊥平面ABB1,根據(jù)直線與平面垂直的判定定理可知只需證CF垂直平面ABB1內(nèi)兩相交直線垂直,而CF⊥BB1,CF⊥AB,BB1∩AB=B,滿足定理?xiàng)l件;
(Ⅱ)取AB1的中點(diǎn)G,連接EG,F(xiàn)G,欲證CF∥平面AEB1,根據(jù)直線與平面平行的判定定理可知只需證CF與平面AEB1內(nèi)一直線平行即可,而CF∥EG,CF?平面AEB1,EG?平面AEB1,滿足定理?xiàng)l件.
解答:證明:(Ⅰ)∵三棱柱ABC-A1B1C1是直棱柱,∴BB1⊥平面ABC.
又∵CF?平面ABC,
∴CF⊥BB1
∵∠ACB=90°,AC=BC=2,F(xiàn)是AB中點(diǎn),
∴CF⊥AB.
又∵BB1∩AB=B,
∴CF⊥平面ABB1
(Ⅱ)證明:取AB1的中點(diǎn)G,連接EG,F(xiàn)G.

∵F、G分別是棱AB、AB1中點(diǎn),
∴FG∥BB1,BB1
又∵EC∥BB1,
∴FG∥EC,F(xiàn)G=EC.
∴四邊形FGEC是平行四邊形,
∴CF∥EG.
又∵CF?平面AEB1,EG?平面AEB1,
∴CF∥平面AEB1
點(diǎn)評:本小題主要考查直線與平面平行的判定,以及直線與平面垂直的判定,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動點(diǎn),F(xiàn)是AB中點(diǎn),AC=BC=2,AA1=4.
(1)求證:CF⊥平面ABB1
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分別是棱CC1、AB中點(diǎn).
(1)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明;
(2)求四棱錐A-ECBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•莒縣模擬)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CCl、AB中點(diǎn).
(I)求證:CF⊥BB1
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)證明:直線CF∥平面AEBl

查看答案和解析>>

同步練習(xí)冊答案