精英家教網(wǎng)請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.
分析:(1)可設包裝盒的高為h(cm),底面邊長為a(cm),寫出a,h與x的關系式,并注明x的取值范圍.再利用側面積公式表示出包裝盒側面積S關于x的函數(shù)解析式,最后求出何時它取得最大值即可;
(2)利用體積公式表示出包裝盒容積V關于x的函數(shù)解析式,最后利用導數(shù)知識求出何時它取得的最大值即可.
解答:解:設包裝盒的高為h(cm),底面邊長為a(cm),則a=
2
x,h=
2
(30-x),0<x<30.
(1)S=4ah=8x(30-x)=-8(x-15)2+1800,
∴當x=15時,S取最大值.
(2)V=a2h=2
2
(-x3+30x2),V′=6
2
x(20-x),
由V′=0得x=20,
當x∈(0,20)時,V′>0;當x∈(20,30)時,V′<0;
∴當x=20時,包裝盒容積V(cm3)最大,
此時,
h
a
=
1
2

即此時包裝盒的高與底面邊長的比值是
1
2
點評:考查函數(shù)模型的選擇與應用,考查函數(shù)、導數(shù)等基礎知識,考查運算求解能力、空間想象能力、數(shù)學建模能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年山東省威海四中高二(下)期中數(shù)學試卷(文科)(解析版) 題型:解答題

請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省泰州市泰興三中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A,B,C,D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上,是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=x(cm).
(1)若廣告商要求包裝盒側面積S(cm2)最大,試問x應取何值?
(2)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二第七學段考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題14分)請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個正四棱柱(底面是正方形的直棱柱)形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形HEF斜邊的兩個端點,設AE=FB=xcm.

(1)請用分別表示|GE|、|EH|的長

(2)若廣告商要求包裝盒側面積S(cm2)最大,試問x應取何值?

H

 
(3)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三練習數(shù)學 題型:解答題

請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、FAB上是被切去的等腰直角三角形斜邊的兩個端點,設AEFBxcm.

(1)若廣告商要求包裝盒側面積S(cm)最大,試問x應取何值?

(2)若廣告商要求包裝盒容積V(cm)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

 

查看答案和解析>>

同步練習冊答案