一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內(nèi)盛有a升水時,水面恰好經(jīng)過正四棱錐的頂點P,如果:將容器倒置,水面也恰好過點P有下列四個命題:
①正四棱錐的高等于正四棱柱的高的一半;
②若往容器內(nèi)再注a升水,則容器恰好能裝滿;
③將容器側(cè)面水平放置時,水面恰好經(jīng)過點P;
④任意擺放該容器,當水面靜止時,水面都恰好經(jīng)過點P.
其中正確命題的序號為
 
(寫出所有正確命題的序號)
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:設(shè)圖(1)水的高度為h2,幾何體的高為h1,由已知得h1=
5
3
h2;當容器側(cè)面水平放置時,P點在長方體中截面上,又水占容器內(nèi)空間的一半,所以水面也恰好經(jīng)過P點;當水面與正四棱錐的一個側(cè)面重合時,水的體積為
25
36
b2h2
2
3
b2h2.由此能求出正確命題.
解答: 解:設(shè)圖(1)水的高度為h2,幾何體的高為h1,
圖(2)中水的體積為b2h1-b2h2=b2(h1-h2),
所以
2
3
b2h2=b2(h1-h2),
所以h1=
5
3
h2,故②正確.
當容器側(cè)面水平放置時,P點在長方體中截面上,
又水占容器內(nèi)空間的一半,所以水面也恰好經(jīng)過P點,
故①錯誤,③正確.
假設(shè)④正確,當水面與正四棱錐的一個側(cè)面重合時,
經(jīng)計算得水的體積為
25
36
b2h2
2
3
b2h2,矛盾,故④不正確.
故答案為:②③.
點評:本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列五種寫法,其中錯誤寫法的個數(shù)為( 。
(1){0}∈{0,2,3};(2)∅⊆{0};(3){1,2,0}(4)0∈∅;(5)0∩∅=∅
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(
1
2
+
1
2
ax)+x2-ax(a為常數(shù),a>0).
(1)若x=-
1
2
是函數(shù)f(x)的一個極值點,求a的值;
(2)求證:當0<a≤2時,f(x)在[
1
2
,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在梯形ABCD中,AB∥CD,如果分別以下列各選項所給的內(nèi)容作為已知條件,那么其中不能確定BD長度的選項是(  )
A、AC=4,∠ABD=45°,∠ACD=30°
B、AB=2,CD=2
3
,∠ABD=45°,∠ACD=30°
C、AB=2,CD=2
3
,AC=4,∠ACD=30°
D、CD=2
3
,∠ABD=45°,∠ACD=30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a為實常數(shù)).若f(x)在[2,+∞)上是單調(diào)函數(shù),則a的取值范圍是( 。
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一簡單幾何體的一個面ABC內(nèi)接于圓O,G、H分別是AE、BC的中點,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.
(1)求證:GH∥平面ACD;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,試求該幾何體的V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體的四個頂點構(gòu)成的幾何體的三視圖如圖,若各視圖均為邊長為2的正方形,則這個幾何體的體積是( 。
A、
4
3
B、
8
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg(2sinx-
3
)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過定點(1,2)一定可作兩條直線與圓x2+y2+kx+2y+k2-15=0相切,則k的取值范圍是
 

查看答案和解析>>

同步練習冊答案