已知a,b是正實(shí)數(shù),設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb.
(Ⅰ)設(shè)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x,使x∈[,]且f(x)≤g(x)成立,求的取值范圍.
【答案】分析:(I)根據(jù)已知求出h(x)=f(x)-g(x)的解析式,求出其導(dǎo)函數(shù),分別求出導(dǎo)函數(shù)為正,為負(fù)時(shí)x的取值范圍,進(jìn)而可得h(x)的單調(diào)區(qū)間;
(Ⅱ)根據(jù)區(qū)間的定義可得,由f(x)≤g(x),結(jié)合(I)中函數(shù)的單調(diào)性,分類(lèi)討論,最后綜合討論結(jié)果,可得的取值范圍.
解答:解:(1)∵h(yuǎn)(x)=f(x)-g(x)=xlnx+a-xlnb
∴h′(x)=lnx+1-lnb
由h′(x)>0得x>
∴h(x)在(0,)上單調(diào)遞減,(,+∞)上單調(diào)遞增.…(4分)
(2)由<7                      …(5分)
(i)當(dāng),即時(shí),
h(x)min=h()=-+a
由-+a≤0得≥e,
∴e≤                …(7分)
(ii)當(dāng)時(shí),a>
∴h(x)在[,]上單調(diào)遞增.
h(x)min=h()=(ln-lnb)+a≥(lnlnb)+a==b>0
∴不成立                                         …(9分)
(iii)當(dāng),即時(shí),a<b
h(x)在[,]上單調(diào)遞減.
h(x)min=h()=(ln-lnb)+a<(lnlnb)+a==<0
∴當(dāng)時(shí)恒成立                           …(11分)
綜上所述,e≤<7                            …(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問(wèn)題,熟練掌握導(dǎo)數(shù)法求函數(shù)的單調(diào)性和最值的方法和步驟是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是正實(shí)數(shù),求證:
a
b
+
b
a
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是正實(shí)數(shù),函數(shù)f(x)=-
1
3
x3+ax2+bx在x∈[-1,2]上單調(diào)遞增,則a+b的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是正實(shí)數(shù),設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb.
(Ⅰ)設(shè)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x0,使x0∈[
a+b
4
,
3a+b
5
]且f(x0)≤g(x0)成立,求
b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b是正實(shí)數(shù),則下列不等式中不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b是正實(shí)數(shù),證明
a
+
b
≤2
a+b
2

查看答案和解析>>

同步練習(xí)冊(cè)答案