設(shè)函數(shù)f(x)=a-
22x+1
,
(1)求證:不論a為何實數(shù)f(x)總為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)若不等式f(x)+a>0恒成立,求實數(shù)a的取值范圍.
分析:(1)用單調(diào)性的定義來證明.
(2) f(x)為奇函數(shù),∴f(-x)=-f(x)對所有x都成立求出a.
(3)f(x)+a>0恒成立轉(zhuǎn)化為2a>
2
2x+1
恒成立,找
2
2x+1
的最大值即可.
解答:解:(1)f(x)的定義域為R,設(shè)x1<x2
f(x1)-f(x2)=a-
2
2x1+1
-a+
2
2x2+1
=
2•(2x1-2x2)
(1+2x1)(1+2x2)
,
∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0,∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不論a為何實數(shù)f(x)總為增函數(shù).

(2)∵f(x)為奇函數(shù),∴f(-x)=-f(x),即a-
2
2-x+1
=-a+
2
2x+1
,
解得:a=1.∴f(x)=1-
2
2x+1
.

(3)∵2x+1>1,∴0<
2
2x+1
<2

f(x)=a-
2
2x+1
,∴f(x)+a>0可化為2a-
2
2x+1
>0,
2a>
2
2x+1
.故要使f(x)+a>0恒成立,只須2a≥2,
即a≥1.
點評:本題是一道難度中檔的綜合題,第三問是函數(shù)方面的恒成立問題,恒成立問題一般有兩種情況,一是f(x)>a恒成立,只須比f(x)的最小值小即可,二是f(x)<a恒成立,只須比f(x)的最大值大即可.
練習冊系列答案
相關(guān)習題

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�