已知點(diǎn),,以線段為直徑作圓,則直線與圓的位置關(guān)系是

A.相交且過(guò)圓心      B.相交但不過(guò)圓心    C.相切             D.相離

 

【答案】

B

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052108182765725869/SYS201305210818413603772334_DA.files/image001.png">,,圓以線段為直徑,所以圓的方程為,根據(jù)圓心到直線的距離與半徑的關(guān)系可知圓與直線相交,但是不過(guò)圓心.

考點(diǎn):本小題主要考查圓的標(biāo)準(zhǔn)方程的求解、直線與圓的位置關(guān)系的判斷.

點(diǎn)評(píng):判斷直線與圓的位置關(guān)系,主要以及圓心到直線的距離與半徑之間的關(guān)系判斷,這種方法比聯(lián)立方程組簡(jiǎn)單.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且橢圓以拋物線y2=16x的焦點(diǎn)為其一個(gè)焦點(diǎn),以雙曲線
x2
16
-
y2
9
=1
的焦點(diǎn)為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A(-1,0),B(1,0),且C,D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)P是線段CD上的動(dòng)點(diǎn),求
AP
BP
的取值范圍.
(3)試問(wèn)在圓x2+y2=a2上,是否存在一點(diǎn)M,使△F1MF2的面積S=b2(其中a為橢圓的半長(zhǎng)軸長(zhǎng),b為橢圓的半短軸長(zhǎng),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn)),若存在,求tan∠F1MF2的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0,若直線l過(guò)點(diǎn)P且被圓C截得的線段AB長(zhǎng)為4
3

(Ⅰ)求直線l的方程;
(Ⅱ)設(shè)直線l與圓C交于A、B兩點(diǎn),求以線段AB為直徑的圓Q方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)E(-2,0),F(xiàn)(2,0),曲線C上的動(dòng)點(diǎn)M滿足
ME
MF
=-3,定點(diǎn)A(2,1),由曲線C外一點(diǎn)P(a,b)向曲線C引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(Ⅰ)求線段PA的最小值;
(Ⅱ)若以P為圓心所作的⊙P與曲線C有公共點(diǎn),試求半徑取最小值時(shí)⊙P的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013江蘇省徐州市高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知點(diǎn),,則以線段為直徑的圓的方程是      

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A、B的距離為2,以B為圓心作半徑為22的圓,P為圓上一點(diǎn),線段AP的垂直平分線l與直線PB交于點(diǎn)M,當(dāng)P在圓周上運(yùn)動(dòng)時(shí)點(diǎn)M的軌跡記為曲線C.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線C的方程,并說(shuō)明它是什么樣的曲線;

(2)試判斷l(xiāng)與曲線C的位置關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案