分析 (1)利用絕對值不等式的性質(zhì)可得:|x+1|+|x-2|≥|x+1-(x-2)|=3,即可得出;
(2)利用柯西不等式的性質(zhì)即可得出.
解答 解:(1)由題設(shè)知,當(dāng)x∈R時,恒有|x+1|+|x-2|-a≥0,
即|x+1|+|x-2|≥a,又|x+1|+|x-2|≥|x+1-(x-2)|=3,
∴a≤3.
(2)由柯西不等式(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=1,
∴x2+y2+z2≥$\frac{1}{14}$,
當(dāng)且僅當(dāng)$\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$時,即x=$\frac{1}{14}$,y=$\frac{1}{7}$,z=$\frac{3}{14}$時,
x2+y2+z2的最小值為$\frac{1}{14}$.
點評 本題考查了絕對值不等式的性質(zhì)、柯西不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [30°,45°] | B. | [45°,60°] | C. | [30°,90°) | D. | [60°,90°) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com