(本小題共13分)
已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(Ⅰ)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
(Ⅱ)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

解:(Ⅰ)∵
.                                          ……………………1分
處切線方程為,
,                                                 ……………………3分
. (各1分)                                 ……………………5分
(Ⅱ)
.      ……………………7分
①當(dāng)時(shí),,                                          

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.          ……………………9分
②當(dāng)時(shí),令,得                  ……………………10分
(ⅰ)當(dāng),即時(shí),

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;……11分
(ⅱ)當(dāng),即時(shí),,
單調(diào)遞減;             ……12分
(ⅲ)當(dāng),即時(shí),

上單調(diào)遞增,在上單調(diào)遞  ………13分
綜上所述,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
當(dāng)時(shí),單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,
當(dāng)時(shí),的單調(diào)遞減區(qū)間為; 
當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,
(“綜上所述”要求一定要寫出來)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=a-x-lnx(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),證明:(x-1)(lnx-f(x))≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.
(Ⅰ) 求a、b的值;  
(Ⅱ) 設(shè)x>0,試比較f(x)與g(x)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)已知函數(shù).
(1)若,點(diǎn)P為曲線上的一個動點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、已知函數(shù),
(1)求曲線在點(diǎn)的切線方程;
(2)求此函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)函數(shù).
(I )討論函數(shù)/(均的單調(diào)性;
(II)若時(shí),恒有,試求實(shí)數(shù)a的取值范圍;
(III)令,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.函數(shù)上是
A.單調(diào)增函數(shù)B.單調(diào)減函數(shù)
C.在上單調(diào)遞增,在上單調(diào)遞減;
D.在上單調(diào)遞減,在上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),曲線在點(diǎn)處的切線方程為,則曲線在點(diǎn)處切線的斜率為
A.4   B.   C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在R上的連續(xù)函數(shù)y=f(x)的圖像在點(diǎn)M(1,f(1))處的切線方程為,則等于(   )
A.1B.2 C.3D.4

查看答案和解析>>

同步練習(xí)冊答案