分析 先畫出圖象,再根據(jù)a<b<c,利用f(a)=f(b)=f(c),可得-log2a=log2b=-$\frac{1}{2}$c+4,由此可確定ab+c的取值范圍.
解答 解:根據(jù)已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<4}\\{-\frac{1}{2}x+4,x≥4}\end{array}\right.$,
畫出函數(shù)圖象:
∵f(a)=f(b)=f(c),
∴-log2a=log2b=-$\frac{1}{2}$c+4,
∴l(xiāng)og2(ab)=0,0<-$\frac{1}{2}$c+4<2,
解得ab=1,4<c<8,
∴5<ab+c<9.
故答案為:(5,9).
點評 本題考查分段函數(shù),考查絕對值函數(shù),考查數(shù)形結(jié)合的思想方法,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | I∈N | B. | $\sqrt{2}$∈Q | C. | {1,2}⊆{1,2,3} | D. | ∅⊆{0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1) | B. | (1)(2) | C. | (2)(3) | D. | (2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com