已知數(shù)列{an},a1=1,an+1=an+n,計(jì)算數(shù)列{an} 的第20項(xiàng).現(xiàn)已給出該問題算法的程序框圖(如圖所示).為使之能完成上述的算法功能,則在右圖判斷框中(A)處應(yīng)填上合適的語句是    ;在處理框中(B)處應(yīng)填上合適的語句是   
【答案】分析:(1)由已知可得程序的功能是:計(jì)算滿足條件①a1=1②an=an-1+n,n≥2的數(shù)列的前20項(xiàng)的和,由于S的初值為0,故循環(huán)需要執(zhí)行20次,又因?yàn)檠h(huán)變量的初值為1,故循環(huán)變量的值為小于20(最大為19)時,循環(huán)繼續(xù)執(zhí)行,當(dāng)循環(huán)變量的值大于等于20時,結(jié)束循環(huán),輸出累加值S.據(jù)此可得(A),(B)處滿足條件的語句.
解答:解:由已知可得程序的功能是:
計(jì)算滿足條件①a1=1②an=an-1+n,n≥2的數(shù)列的前20項(xiàng)的和,
由于S的初值為1,故循環(huán)需要執(zhí)行20次,
又因?yàn)檠h(huán)變量的初值為1,
故循環(huán)變量的值為小于20(最大為19)時,循環(huán)繼續(xù)執(zhí)行,
當(dāng)循環(huán)變量的值大于等于20時,結(jié)束循環(huán),輸出累加值S.
故該語句應(yīng)為:A:i<=19或i<20;B:s=s+n.
點(diǎn)評:算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求數(shù)列{an}的通項(xiàng)公式;
(II)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a 1=
2
5
,且對任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求證:數(shù)列{
1
an
}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a 1=
2
5
,且對任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通項(xiàng)公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是數(shù)列{an}的前n項(xiàng)和,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}:,,,…,,…,其中a是大于零的常數(shù),記{an}的前n項(xiàng)和為Sn,計(jì)算S1,S2,S3的值,由此推出計(jì)算Sn的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

同步練習(xí)冊答案