棱長為a的正方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E、F分別是棱AA1、DD1的中點,則直線EF被球O截得的線段長為   
【答案】分析:先求球的半徑,再求弦長圖中QR即可.
解答:解:因為正方體內(nèi)接于球,所以2R=,R=,
過球心O和點E、F的大圓的截面圖如圖所示,
則直線被球截得的線段為QR,過點O作OP⊥QR
于點P,所以,在△QPO中,QR=2QP=2
故答案為:
點評:本題考查組合體的結(jié)構(gòu)特征,考查空間想象能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)某工廠準(zhǔn)備在倉庫的一側(cè)建立一個矩形儲料場(如圖1),現(xiàn)有50米長的鐵絲網(wǎng),如果用它來圍成這個儲料場,那么長和寬各是多少時,這個儲料場的面積最大?并求出這個最大的面積.
(2)如圖2,已知AB、DE是圓O的直徑,AC是弦,AC∥DE,求證CE=EB.
(3)如圖3所示的棱長為a的正方體中:①求CD1和AB所成的角的度數(shù);②求∠B1BD1的正弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在棱長為a的正方體ABCD-A1B1C1D1中,M為A1D中點,N為AC中點.
(1)求異面直線MN和AB所成的角;
(2)求點M到平面BB1D1D之距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在棱長為a的正方體ABCD-A1B1C1D1中,P是C1B1的中點,若E,F(xiàn)都是AB上的點,且|EF|=
a2
,Q是A1B1上的點,則四面體EFPQ的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2001•上海)在棱長為a的正方體OABC-O′A′B′C′中,E、F分別是棱AB、BC上的動點,且AE=BF.
(Ⅰ)求證:A′F⊥C′E;
(Ⅱ)當(dāng)三棱錐B′-BEF的體積取得最大值時,求二面角B′-EF-B的大。ńY(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在空間直角坐標(biāo)系中,有一棱長為a的正方體ABCO-A′B′C′D′,A′C的中點E與AB的中點F的距離為( 。

查看答案和解析>>

同步練習(xí)冊答案