已知三次方程x3+ax2+2x+b=0有三個實數(shù)根,它們分別可作為拋物線、雙曲線、橢圓的離心率,則實數(shù)a的取值范圍是   
【答案】分析:根據(jù)拋物線的離心率為1,得到b=-a-3,將其代入方程將方程因式分解,根據(jù)題意,轉(zhuǎn)化為二次方程的實根分布,結(jié)合二次函數(shù)的圖象寫出限制條件.
解答:解:因為拋物線的離心率為1,
所以1是方程x3+ax2+2x+b=0的根,
可知b=-a-3,
x3+ax2+x+b=(x-1)[x2+(a+1)x+a+3]=0,
又橢圓的離心率大于0小于1,雙曲線大于1,
所以x2+(a+1)x+a+3=0的兩根分別在(0,1)(1,+∞)上
令g(x)=x2+(a+1)x+a+3,
,

故答案為:
點評:本題考查圓錐曲線的離心率的范圍,考查二次方程的實根分布問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三次方程x3+ax2+2x+b=0有三個實數(shù)根,它們分別可作為拋物線、雙曲線、橢圓的離心率,則實數(shù)a的取值范圍是
-3<a<-
5
2
-3<a<-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知三次方程x3+ax2+2x+b=0有三個實數(shù)根,它們分別可作為拋物線、雙曲線、橢圓的離心率,則實數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三次方程x3+ax2+2x+b=0有三個實數(shù)根,它們分別可作為拋物線、雙曲線、橢圓的離心率,則實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省南通市啟東市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知三次方程x3+ax2+2x+b=0有三個實數(shù)根,它們分別可作為拋物線、雙曲線、橢圓的離心率,則實數(shù)a的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案