4.不等式$\frac{1}{x-2}$≤1的解集是(-∞,2)∪[3,+∞).

分析 首先通過移項通分將不等式等價轉化為整式不等式,然后求整式不等式的解集.

解答 解:原式等價于$\frac{1-(x-2)}{x-2}≤0$即$\frac{x-3}{x-2}≥0$所以不等式的解集為(-∞,2)∪[3,+∞);
故答案為:(-∞,2)∪[3,+∞);

點評 本題考查了分式不等式的解法;關鍵是將分式不等式轉化為整式不等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.C${\;}_{5n}^{11-2n}$-A${\;}_{11-3n}^{2n-2}$=100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知點(a,b)在圓C:x2+y2=r2(r≠0)的外部,則ax+by=r2與圓C的位置關系是( 。
A.相切B.相離C.內(nèi)含D.相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個整數(shù),則實數(shù)k的取值范圍為(  )
A.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$)B.($\frac{1}{ln2}$-2,$\frac{1}{ln3}$-$\frac{4}{3}$]C.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1]D.($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}$-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列命題中,真命題是(  )
A.所有的素數(shù)是奇數(shù)B.?x∈R,x+$\frac{1}{x}$≥2
C.?x∈R,x2-2x-3=0D.存在兩個相交平面垂直于同一直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.對于函數(shù)f(x)=xex有以下命題:
①函數(shù)f(x)只有一個零點; 
②函數(shù)f(x)最小值為-e; 
③函數(shù)f(x)沒有最大值; 
④函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞減.
其中正確的命題是(只填序號)①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,a=2,cos C=-$\frac{1}{4}$,3sin A=2sin B,則c=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知$A(\sqrt{3},2),F(xiàn)(\sqrt{3},0)$,P是橢圓$\frac{x^2}{4}+{y^2}=1$上的任一點,則|PA|-|PF|的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=ex-ax有兩個不同的零點,
(Ⅰ) 求實數(shù)a的取值范圍.
(Ⅱ)設f(x)的極值點為x=x0,證明:對任意的x>0,恒有不等式f(x0+x)>f(x0-x)成立.

查看答案和解析>>

同步練習冊答案