已知正三棱錐P-ABC,點P,A,B,C都在半徑為的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為   
【答案】分析:先利用正三棱錐的特點,將球的內(nèi)接三棱錐問題轉(zhuǎn)化為球的內(nèi)接正方體問題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問題,利用等體積法可實現(xiàn)此計算
解答:解:∵正三棱錐P-ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接圓O,
∵圓O的半徑為
∴正方體的邊長為2,即PA=PB=PC=2
球心到截面ABC的距離即正方體中心到截面ABC的距離
設(shè)P到截面ABC的距離為h,則正三棱錐P-ABC的體積V=S△ABC×h=S△PAB×PC=××2×2×2=2
△ABC為邊長為2的正三角形,S△ABC=××
∴h===
∴正方體中心O到截面ABC的距離為-=
故答案為
點評:本題主要考球的內(nèi)接三棱錐和內(nèi)接正方體間的關(guān)系及其相互轉(zhuǎn)化,棱柱的幾何特征,球的幾何特征,點到面的距離問題的解決技巧,有一定難度,屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的側(cè)棱長為2,底面邊長為1,平行四邊形EFGH的四個頂點分別在棱AB、BC、CP、PA上,則
1
EF
+
1
FG
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC的底面邊長為6,側(cè)棱長為
13
.有一動點M在側(cè)面PAB內(nèi),它到頂點P的距離與到底面ABC的距離比為2
2
:1

精英家教網(wǎng)
(1)求動點M到頂點P 的距離與它到邊AB的距離之比;
(2)在側(cè)面PAB所在平面內(nèi)建立為如圖所示的直角坐標(biāo)系,求動點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省四星高中高三數(shù)學(xué)小題訓(xùn)練(7)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省蘇州市高考信息數(shù)學(xué)試卷(正題)(解析版) 題型:解答題

已知正三棱錐P-ABC主視圖如圖所示,其中△PAB中,AB=PC=2cm,則這個正三棱錐的左視圖的面積為    cm2

查看答案和解析>>

同步練習(xí)冊答案