11.(1)計(jì)算log2.56.25+lg0.01+ln$\sqrt{e}$-2${\;}^{1+lo{g}_{2}3}$
(2)已知tanα=-3,且α是第二象限的角,求sinα和cosα.

分析 (1)利用對(duì)數(shù)的運(yùn)算性質(zhì),求得所給式子的值.
(2)由條件利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),求得sinα和cosα的值.

解答 解:(1)log2.56.25+lg0.01+ln$\sqrt{e}$-2${\;}^{1+lo{g}_{2}3}$=2-2+$\frac{1}{2}$-2×3=-$\frac{11}{2}$.
(2)∵tanα=-3=$\frac{sinα}{cosα}$,sin2α+cos2α=1,又α是第二象限的角,∴sinα>0,cosα<0,
求得sinα=$\frac{3\sqrt{10}}{10}$,cosα=-$\frac{\sqrt{10}}{10}$.

點(diǎn)評(píng) 本題主要考查對(duì)數(shù)的運(yùn)算性質(zhì),同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a∈R,則“a=0”是“cosa>sina”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=loga(ax-1),其中a>0,且a≠1.
(1)求證:函數(shù)f(x)的圖象在y軸的一側(cè);
(2)設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)的圖象上任意兩個(gè)不同的點(diǎn),且x1<x2,求證:y1<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知具有線性相關(guān)的兩個(gè)變量x,y之間的一組數(shù)據(jù)如下:
x01234
y2.24.34.54.86.7
回歸方程是$\widehat{y}$=bx+a,其中b=0.95,a=$\overline{y}$-b$\overline{x}$.則當(dāng)x=6時(shí),y的預(yù)測(cè)值為(  )
A.8.1B.8.2C.8.3D.8.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=log2x-1$\sqrt{3x-2}$的定義域是($\frac{2}{3}$,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求滿足下列條件的直線的一般式方程:
(Ⅰ)經(jīng)過兩條直線2x-3y+10=0  和3x+4y-2=0 的交點(diǎn),且垂直于直線3x-2y+4=0
(Ⅱ)與兩條平行直線3x+2y-6=0及6x+4y-3=0等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校為了支持生物課程基地研究植物生長,計(jì)劃利用學(xué)校空地建造一間室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2).
(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)求S的最大值,及此時(shí)長X的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$f(x)=\overrightarrow a•\overrightarrow b$,其中向量$\overrightarrow a=({\sqrt{3}sin2x,1}),\overrightarrow b=({1,cos2x})$(x∈R),
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知f (A)=2,a=$\sqrt{7}$,b=$\sqrt{3}$,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知方程|lnx|=kx+1在(0,e3)上有三個(gè)不等實(shí)根,則實(shí)數(shù)k的取值范圍是( 。
A.$({0,\frac{2}{e^3}})$B.$({\frac{3}{e^3},\frac{2}{e^2}})$C.$({\frac{2}{e^3},\frac{1}{e^2}})$D.$[{\frac{2}{e^3},\frac{1}{e^2}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案