某居民小區(qū)內建有一塊矩形草坪ABCD,AB=50米,BC=米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內鋪設三條小路OE、EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°,如圖所示.
(1)設∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關系式,并求出此函數(shù)的定義域;
(2)經核算,三條路每米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.

【答案】分析:(1)要將△OEF的周長l表示成α的函數(shù)關系式,需把△OEF的三邊分別用含有α的關系式來表示,而OE,
OF,分別可以在Rt△OBE,Rt△OAF中求解,利用勾股定理可求EF,從而可求.
(2)要求鋪路總費用最低,只要求△OEF的周長l的最小值即可.由(1)得,
利用換元,設sinα+cosα=t,則,從而轉化為求函數(shù)在閉區(qū)間上的最小值.
解答:解:(1)∵在Rt△BOE中,OB=25,∠B=90°,∠BOE=α,
∴OE=
在Rt△AOF中,OA=25,∠A=90°,∠AFO=α,
∴OF=
又∠EOF=90°,
∴EF═=,


當點F在點D時,這時角α最小,求得此時α=;
當點E在C點時,這時角α最大,求得此時α=
故此函數(shù)的定義域為
(2)由題意知,要求鋪路總費用最低,只要求△OEF的周長l的最小值即可.
由(1)得,
設sinα+cosα=t,則,

由t=sinα+cosα=,又,得,

從而,當,即BE=25時,
所以當BE=AF=25米時,鋪路總費用最低,最低總費用為元.
點評:本題主要考查了借助于三角函數(shù)解三角形在實際問題中的應用,考查了利用數(shù)學知識解決實際問題的能力,及推理運算的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網某居民小區(qū)內建有一塊矩形草坪ABCD,AB=50米,BC=25
3
米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內鋪設三條小路OE、EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°,如圖所示.
(1)設∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關系式,并求出此函數(shù)的定義域;
(2)經核算,三條路每米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省連云港市贛榆高級中學高一(下)綜合練習數(shù)學試卷(解析版) 題型:解答題

某居民小區(qū)內建有一塊矩形草坪ABCD,AB=50米,BC=米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內鋪設三條小路OE、EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°,如圖所示.
(1)設∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關系式,并求出此函數(shù)的定義域;
(2)經核算,三條路每米鋪設費用均為400元,試問如何設計才能使鋪路的總費用最低?并求出最低總費用.

查看答案和解析>>

同步練習冊答案