定義:若函數(shù)f(x)對于其定義域內的某一數(shù)x0,有 f (x0)=x0,則稱x0是f (x)的一個不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1 (a≠0).
(Ⅰ)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(Ⅱ)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標是函數(shù)f(x)的不動點,且A、B兩點關于直線y=kx+
a
5a2-4a+1
對稱,求b的最小值.
(Ⅰ)當a=1,b=-2時,有f (x)=x2-x-3,
令x2-x-3=x,化簡得:x2-2x-3=0,
解得:x1=-1,或x2=3
故所求的不動點為-1或3.(4分)

(Ⅱ)令ax2+(b+1)x+b-1=x,則ax2+bx+b-1=0①
由題意,方程①恒有兩個不等實根,所以△=b2-4a(b-1)>0,
即b2-4ab+4a>0恒成立,(6分)
整理得b2-4ab+4a=(b-2a)2+4a-4a2>0,
故4a-4a2>0,即0<a<1(8分)

(Ⅲ)設A(x1,x1),B(x2,x2)(x1≠x2),則kAB=1,∴k=-1,
所以y=-x+
a
5a2-4a+1
,(9分)
又AB的中點在該直線上,所以
x1+x2
2
=-
x1+x2
2
+
a
5a2-4a+1
,
∴x1+x2=
a
5a2-4a+1

而x1、x2應是方程①的兩個根,所以x1+x2=-
b
a
,即-
b
a
=
a
5a2-4a+1

b=-
a2
5a2-4a+1
(12分)
=-
1
(
1
a
)
2
-4(
1
a
)+5
=
1
(
1
a
-2)
2
+1

∴當a=
1
2
∈(0,1)時,bmin=-1.(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出定義:若函數(shù)f(x)在D上可導,即f′(x)存在,且導函數(shù)f′(x)在D上也可導,則稱f(x)在D上存在二階導函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù)在(0,
π
2
)
上不是凸函數(shù)的是( 。
A、f(x)=sinx+cosx
B、f(x)=lnx-2x
C、f(x)=-x3+2x-1
D、f(x)=-xe-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:若函數(shù)f(x)對于其定義域內的某一數(shù)x0,有 f (x0)=x0,則稱x0是f (x)的一個不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1 (a≠0).
(Ⅰ)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(Ⅱ)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標是函數(shù)f(x)的不動點,且A、B兩點關于直線y=kx+
a5a2-4a+1
對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若函數(shù)f(x)在D上可導,即f′(x)存在,且導函數(shù)f′(x)在D上也可導,則稱f(x)在D上存在二階導函數(shù),記f″(x)=[(f′(x)]′.若f(x)>0在D上恒成立,則稱f(x)在D上為凹函數(shù).以下四個函數(shù)在(0,
π
2
)
上不是 凹函數(shù)的是( 。
A、f(x)=1-sinx
B、f(x)=ex-2x
C、f(x)=x3-x2-1
D、f(x)=-xe-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•廣州模擬)定義:若函數(shù)f(x)的圖象經過變換T后所得圖象對應函數(shù)的值域與f(x)的值域相同,則稱變換T是f(x)的同值變換.下面給出四個函數(shù)及其對應的變換T,其中T不屬于f(x)的同值變換的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若函數(shù)f(x)在D上可導,即f′(x)存在,且導函數(shù)f′(x)在D上也可導,則稱f(x)在D上存在二階導函數(shù),記f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,則稱f(x)在D上為上凸函數(shù).以下四個函數(shù)在(0,
π
2
)
上不是上凸函數(shù)的是( 。

查看答案和解析>>

同步練習冊答案