在直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,直線與C交于A,B兩點(diǎn). (Ⅰ)寫出C的方程;(Ⅱ)若,求k的值;
(Ⅲ)若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有||>||.
(Ⅰ).(Ⅱ). (Ⅲ)在題設(shè)條件下,恒有.
【解析】(I)根據(jù)橢圓定義可知a=2,,所以b=1,再注意焦點(diǎn)在y軸上,曲線C的方程為.
(II) 直線與橢圓方程聯(lián)立,消y得關(guān)于x的一元二次方程,再根據(jù)坐標(biāo)化為,借助直線方程和韋達(dá)定理建立關(guān)于k的方程,求出k值.
(III)要證:||>||,,再根據(jù)A在第一象限,故,,從而證出結(jié)論.
解:(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點(diǎn)P的軌跡C是以為焦點(diǎn),長(zhǎng)半軸為2的橢圓.它的短半軸,
故曲線C的方程為. 3分
(Ⅱ)設(shè),其坐標(biāo)滿足
消去y并整理得,
故. 5分
若,即.而,
于是,
化簡(jiǎn)得,所以. 8分
(Ⅲ)
.
因?yàn)锳在第一象限,故.由知,從而.又,
故,
即在題設(shè)條件下,恒有. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,直線與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若OAOB,求k的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
在直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,直線與C交于A,B兩點(diǎn).
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有||>||.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年海南省等4校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
在直角坐標(biāo)系中,點(diǎn)p到兩點(diǎn)的距離之和等于4,
設(shè)點(diǎn)P的軌跡為C,直線與C交于A、B兩點(diǎn),
(1)寫出C的方程;
(2)若,求k的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年河南省高二上學(xué)期期末聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
在直角坐標(biāo)系中,點(diǎn)P到兩定點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,過點(diǎn)的直線C交于A,B兩點(diǎn).
(Ⅰ)寫出C的方程;
(Ⅱ)設(shè)d為A、B兩點(diǎn)間的距離,d是否存在最大值、最小值,若存在, 求出d的最大值、最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽省安慶市第一學(xué)期高二第二次月考數(shù)學(xué)試卷 題型:解答題
在直角坐標(biāo)系中,點(diǎn)P到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)P的軌跡為,直線與軌跡C交于A,B兩點(diǎn).
(Ⅰ)寫出軌跡C的方程; (Ⅱ)若,求k的值;
(Ⅲ)若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有||>||
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com