精英家教網 > 高中數學 > 題目詳情
7、y=2cosx-1的值域為
[-3,1]
,y=(2sinx-1)2+3的值域為
[3,12]
分析:先求余弦函數的值域,再求2cosx-1的值域,
求出sinx的范圍,2sinx-1的范圍,然后求(2sinx-1)2+3范圍即可.
解答:解:因為cosx∈[-1,1],所以2cosx-1∈[-3,1]
y=2cosx-1的值域為:[-3,1]
而sinx∈[-1,1]則 2sinx-1∈[-3,1]
(2sinx-1)2∈[0,9]
所以(2sinx-1)2+3∈[3,12]
故答案為:[-3,1];[3,12].
點評:本題考查余弦函數的定義域和值域,考查計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數y=
2cosx+1
的定義域是( 。
A、[2kπ-
π
3
,2kπ+
π
3
](k∈Z)
B、[2kπ-
π
6
,2kπ+
π
6
](k∈Z)
C、[2kπ+
π
3
,2kπ+
3
](k∈Z)
D、[2kπ-
3
,2kπ+
3
](k∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=
2cosx+1
的定義域是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

一函數y=f(x)圖象沿向量
a
=(
π
3
,2)
平移后,得到函數y=2cosx+1的圖象,則y=f(x)在[0,π]上的最大值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=2cosx-1的最大值、最小值分別是(  )
A、2,-2B、1,-3C、1,-1D、2,-1

查看答案和解析>>

同步練習冊答案