【題目】已知點(diǎn),圓,點(diǎn)在圓上運(yùn)動.
()如果是等腰三角形,求點(diǎn)的坐標(biāo).
()如果直線與圓的另一個(gè)交點(diǎn)為,且,求直線的方程.
【答案】(1)或;(2)或.
【解析】試題分析:(1)設(shè)點(diǎn),所以,由是等腰三角形,得或,分別列方程組求解即可;
(2)易知直線為軸時(shí)不合題意,由此可設(shè)直線方程為,與圓聯(lián)立可得,由,用坐標(biāo)表示,結(jié)合韋達(dá)定理求解即可.
試題解析:
()因?yàn)閳A,
所以,半徑為.
設(shè)點(diǎn),所以.
又,所以, ,
因?yàn)?/span>是等腰三角形,
所以或.
當(dāng)時(shí),有,
解得或,
所以或.
當(dāng)時(shí),有,
解得,此時(shí), , 三點(diǎn)共線,不合題意.
綜上, 或.
()若直線為軸,則, 或, .
而,不合題意.
由此可設(shè)直線方程為,
設(shè), ,
由得,
其中,
且, ,
因?yàn)?/span>,
所以, ,
又因?yàn)?/span>,
所以,
將, 代入上式,
整理得,
所以,
解得,即,經(jīng)檢驗(yàn)符合題意,
所以或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為45°,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 滿足,且.
(1) 求解析式;
(2)當(dāng)時(shí),,求的值域;
(3)若方程沒有實(shí)數(shù)根,求實(shí)數(shù)m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售岀8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價(jià)多少元?
(3)每臺冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是菱形, 平面, , , ,點(diǎn)為的中點(diǎn).
()求證: 平面.
()求證:平面平面.
()求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下判斷正確的是( )
A.函數(shù)y=f(x)為R上可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)f(x)極值點(diǎn)的充要條件
B.命題“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”
C.命題“在銳角△ABC中,有 sinA>cosB”為真命題
D.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中, 平面,底面是菱形, , , . 為與的交點(diǎn), 為棱上一點(diǎn),
(1)證明:平面⊥平面;
(2)若三棱錐的體積為,
求證: ∥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2 , 且橢圓E過點(diǎn)(0, ),( ,﹣ ),點(diǎn)A是橢圓上位于第一象限的一點(diǎn),且△AF1F2的面積S△ = .
(1)求點(diǎn)A的坐標(biāo);
(2)過點(diǎn)B(3,0)的直線l與橢圓E相交于點(diǎn)P、Q,直線AP、AQ分別與x軸相交于點(diǎn)M、N,點(diǎn)C( ,0),證明:|CM||CN|為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱垂直于底面, , , , , 分別為, 的中點(diǎn).
(1)求證:平面平面;
(2)求證:在棱上存在一點(diǎn),使得平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com