某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響。已知師父加工一個零件是精品的概率為,師徒二人各加工2個零件都是精品的概率為,
(1)求徒弟加工2個零件都是精品的概率;
(2)求徒弟加工該零件的精品數(shù)多于師父的概率;
(3)設師徒二人加工出的4個零件中精品個數(shù)為ξ,求:ξ的分布列與均值E(ξ)。
解:(1)設徒弟加工1個零件是精品的概率為p1,
,
所以徒弟加工2個零件都是精品的概率是;
(2)設徒弟加工零件的精品數(shù)多于師父的概率為p,
由(1)知,
師父加工2個零件中,精品個數(shù)的分布列如下:

徒弟加工2個零件中,精品個數(shù)的分布列如下:

所以
(3)ξ的分布列為

。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響.已知師父加工一個零件是精品的概率為
2
3
,師徒二人各加工2個零件都是精品的概率為
1
9

(Ⅰ)求徒弟加工2個零件都是精品的概率;
(Ⅱ)求徒弟加工該零件的精品數(shù)多于師父的概率;
(Ⅲ)設師徒二人加工出的4個零件中精品個數(shù)為ξ,求ξ的分布列與均值Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響.已知師父加工一個零件是精品的概率為
2
3
,師徒二人各加工2個零件都是精品的概率為
1
9

(Ⅰ)求徒弟加工該零件的精品數(shù)多于師父的概率;
(Ⅱ)設師徒二人加工出的4個零件中精品個數(shù)為ξ,求ξ的分布列與期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠師徒二人各加工相同型號的零件,是否加工出精品均互不影響.已知師傅加工一個零件是精品的概率為
2
3
,師徒二人各加工2個零件都是精品的概率為
1
9
. 
 (1)求徒弟加工2個零件都是精品的概率;
(2)若師徒二人各加工這種型號的零件2個,求徒弟加工該零件的精品數(shù)多于師傅的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河北省正定中學高三下學期第三次模擬考試數(shù)學(理) 題型:解答題

某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響.已知師父加工一個零件是精品的概率為,師徒二人各加工2個零件都是精品的概率為
(I)求徒弟加工2個零件都是精品的概率;
(II)求徒弟加工該零件的精品數(shù)多于師父的概率;
(III)設師徒二人加工出的4個零件中精品個數(shù)為,求的分布列與均值E.

查看答案和解析>>

科目:高中數(shù)學 來源:河北省2010年高考適應性測試數(shù)學試卷理 題型:解答題

某工廠師徒二人各加工相同型號的零件2個,是否加工出精品均互不影響.已知師父加工一個零件是精品的概率為,師徒二人各加工2個零件都是精品的概率為(I)求徒弟加工2個零件都是精品的概率;

(II)求徒弟加工該零件的精品數(shù)多于師父的概率;

(III)設師徒二人加工出的4個零件中精品個數(shù)為,求的分布列與均值E

 

查看答案和解析>>

同步練習冊答案