求證:、、不可能為等差數(shù)列中的三項.

答案:
解析:

  證明:假設、是等差數(shù)列中的三項,

  則ana1+(n-1)d

  ama1+(m-1)d,

  ala1+(l-1)d

  ∴=(nm)d,

  =(ml)d

  ∴

  而上式中左邊為無理數(shù),右邊為有理數(shù),

  ∴假設不成立.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圖6

我們把由半橢圓=1(x≥0)與半橢圓=1(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.

如圖6,點F0、F1、F2是相應橢圓的焦點,A1、A2和B1、B2分別是“果圓”與x、y軸的交點.〔(文)M是線段A1A2的中點〕

(1)(理)若△F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.

(2)(理)當|A1A2|>|B1B2|時,求的取值范圍.

(文)設P是“果圓”的半橢圓=1(x≤0)上任意一點,求證:當|PM|取得最小值時,P在點B1、B2或A1處.

(3)(理)連結“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數(shù)k,使斜率為k的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的k值;若不存在,請說明理由.

(文)若P是“果圓”上任意一點,求|PM|取得最小值時點P的橫坐標.

查看答案和解析>>

同步練習冊答案