已知甲、乙兩個(gè)工廠在今年的1月份的利潤都是6萬元,且甲廠在2月份的利潤是14萬元,乙廠在2月份的利潤是8萬元。若甲、乙兩個(gè)工廠的利潤(萬元)與月份之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:,

(1)求甲、乙兩個(gè)工廠今年5月份的利潤;

(2)在同一直角坐標(biāo)系下畫出函數(shù)的草圖,并根據(jù)草圖比較今年甲、乙兩個(gè)工廠的利潤的大小情況.

 

 

 

 

【答案】

解:(1)依題意:由,有,解得:

;    ………………………………………………2分

,有,解得:

.  ……………………………………………4分

所以甲在今年5月份的利潤為萬元,乙在今年5月份的利潤為萬元,故有,即甲、乙兩個(gè)工廠今年5月份的利潤相等.  ……………6分

(2)作函數(shù)圖象如下:

 

  

……………………………8分

從圖中,可以看出今年甲、乙兩個(gè)工廠的利潤:

當(dāng)時(shí),有;

當(dāng)時(shí),有;

當(dāng)時(shí),有;   …………………………………………12分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知甲、乙兩個(gè)工廠在今年的1月份的利潤都是6萬元,且甲廠在2月份的利潤是14萬元,乙廠在2月份的利潤是8萬元.若甲、乙兩個(gè)工廠的利潤(萬元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2+b1x+6,g(x)=a2•3x+b2,(a1,a2,b1,b2∈R).
(1)求甲、乙兩個(gè)工廠今年5月份的利潤;
(2)在同一直角坐標(biāo)系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年甲、乙兩個(gè)工廠的利潤的大小情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲、乙兩個(gè)工廠在今年的1月份的利潤都是6萬元,且甲廠在2月份的利潤是14萬元,乙廠在2月份的利潤是8萬元.若甲、乙兩個(gè)工廠的利潤(萬元)與月份之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2+b1x+6,g(x)=a2•3x+b2,(a1,a2,b1,b2∈R)
(1)求f(x),g(x)的表達(dá)式;
(2)在同一直角坐標(biāo)系下畫出函數(shù)f(x)和f(x)在區(qū)間[1,5]上的草圖,并根據(jù)草圖比較今年1~5月份甲、乙兩個(gè)工廠的利潤的大小情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省濟(jì)寧市高一上學(xué)期期末模擬數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知甲、乙兩個(gè)工廠在今年的1月份的利潤都是6萬,且乙廠在2月份的利潤是8萬元.若甲、乙兩個(gè)工廠的利潤(萬元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1,a2,b2∈R).

(1)求函數(shù)f(x)與g(x)的解析式;

(2)求甲、乙兩個(gè)工廠今年5月份的利潤;

(3)在同一直角坐標(biāo)系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1—10月份甲、乙兩個(gè)工廠的利潤的大小情況.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知甲、乙兩個(gè)工廠在今年的1月份的利潤都是6萬元,且甲廠在2月份的利潤是14萬元,乙廠在2月份的利潤是8萬元.若甲、乙兩個(gè)工廠的利潤(萬元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2+b1x+6,g(x)=a2•3x+b2,(a1,a2,b1,b2∈R).
(1)求甲、乙兩個(gè)工廠今年5月份的利潤;
(2)在同一直角坐標(biāo)系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年甲、乙兩個(gè)工廠的利潤的大小情況.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案