選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=成立,求x的取值范圍.
【答案】分析:(I)利用絕對(duì)值不等式即可證得f(x)≥1;
(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x-1|+|x-2|≥2即可.
解答:解:(Ⅰ)證明:由絕對(duì)值不等式得:
f(x)=|x-1|+|x-2|≥|(x-1)-(x-2)|=1  …(5分)
(Ⅱ)∵==+≥2,
∴要使f(x)=成立,需且只需|x-1|+|x-2|≥2,
,或,或
解得x≤,或x≥
故x的取值范圍是(-∞,]∪[,+∞).…(10分)
點(diǎn)評(píng):本題考查帶絕對(duì)值的函數(shù),考查基本不等式的應(yīng)用與絕對(duì)值不等式的解法,求得≥2是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個(gè)近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2

(Ⅱ)比較y與x哪一個(gè)更接近于
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案