11.z+2$\overline{z}$=9+4i(i為虛數(shù)單位),則|z|=5.

分析 設(shè)z=x+yi(x,y∈R),代入z+2$\overline{z}$=9+4i,化為:3x-yi=9+4i,利用復(fù)數(shù)相等即可得出.

解答 解:設(shè)z=x+yi(x,y∈R),∵z+2$\overline{z}$=9+4i,∴x+yi+2(x-yi)=9+4i,化為:3x-yi=9+4i,
∴3x=9,-y=4,解得x=3,y=-4.
∴|z|=$\sqrt{{3}^{2}+(-4)^{2}}$=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知垂直豎在水平地面上相距20米的兩根旗桿的高度分別為10米和15米,地面上的動(dòng)點(diǎn)P到兩旗桿頂點(diǎn)的仰角相等,則點(diǎn)P的軌跡是圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.橢圓$\frac{x^2}{{{{10}^{\;}}}}+\frac{y^2}{{{m^{\;}}}}=1$的焦距為6,則m的值為( 。
A.m=1B.m=19C.m=1 或 m=19D.m=4或m=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=-x2+ax+b的值域?yàn)椋?∞,0],若關(guān)x的不等式$f(x)>-\frac{c}{4}-1$的解集為(m-4,m+1),則實(shí)數(shù)c的值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2-2ax+3在區(qū)間[2,3]上是單調(diào)函數(shù),則a的取值范圍是(-∞,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若雙曲線的一條漸近線為x+2y=0,且雙曲線與拋物線y=x2的準(zhǔn)線僅有一個(gè)公共點(diǎn),則此雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{1}{16}}-\frac{{x}^{2}}{\frac{1}{4}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定義域?yàn)镽的函數(shù)y=f(x)滿足f(x+2)=f(x),且-1≤x<1時(shí),f(x)=1-x2;函數(shù)g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,若F(x)=f(x)-g(x),則x∈[-5,10],函數(shù)F(x)零點(diǎn)的個(gè)數(shù)是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,兩個(gè)橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,$\frac{{y}^{2}}{25}$+$\frac{{x}^{2}}{9}$=1內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上任意一點(diǎn),給出下列三個(gè)判斷:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點(diǎn)的距離之和為定值;
②曲線C關(guān)于直線y=x、y=-x均對(duì)稱;
③曲線C所圍區(qū)域面積必小于36.
上述判斷中正確命題的個(gè)數(shù)為(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,過焦點(diǎn)垂直于長(zhǎng)軸的弦的弦長(zhǎng)為$\frac{{2\sqrt{3}}}{3}$.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案