精英家教網 > 高中數學 > 題目詳情
設函數f(x)=Asin(ωx+φ),(A≠0,ω>0,-<φ<)的圖象關于直線x=對稱,它的周期是π,則( )
A.f(x)的圖象過點(0,
B.f(x)的圖象在[,]上遞減
C.f(x)的最大值為A
D.f(x)的一個對稱中心是點(,0)
【答案】分析:由周期公式可先求ω,根據函數對稱軸處取得函數最值,由函數的圖象關于直線x=對稱,可得sin(∅+)=±1,代入可得∅=,根據三角函數的性質逐個檢驗選項.
解答:解:T=π,∴ω=2.
∵圖象關于直線x=對稱,
sin(φ+×2)=±1
×2+φ=+kπ,k∈Z
又∵-<φ<,∴φ=
∴f(x)=Asin(2x+).再用檢驗法逐項驗證.
故選D
點評:本題考查了三角函數的性質:周期公式的應用;三角函數對稱軸的性質,正弦函數在對稱軸處取得最值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數x,y∈R,有f(x+y)=f(x)f(y).數列{an}滿足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數f(x)的單調性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數x,y∈R,有f(x+y)=f(x)f(y).數列{an}滿足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判斷并證明函數f(x)的單調性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
對不小于2的正整數恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數t=φ(s)=as+b(s>0),滿足f(
s+1
s
)=
t-1
t
;
(3)設x1=
11
17
,xn+1=f(xn),n=1,2,….問:數列{
1
xn-1
}是否為等差數列?若是,求出數列{xn}中最大項的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省惠州一中高二(上)期中數學試卷(文科)(解析版) 題型:解答題

設函數f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數x,y∈R,有f(x+y)=f(x)f(y).數列{an}滿足f(an+1)=(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數f(x)的單調性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數M,當n>M時,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省惠州一中高二(上)期中數學試卷(理科)(解析版) 題型:解答題

設函數f(x)的定義域為R,當x<0時f(x)>1,且對任意的實數x,y∈R,有f(x+y)=f(x)f(y).數列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數f(x)的單調性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數M,當n>M時,an>0恒成立?若存在,求出M的最小值,若不存在,請說明理由;
(Ⅲ)若a1=f(0),不等式對不小于2的正整數恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案